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A fuzzy logic prediction model for fresh and hardened properties of self-compacting concrete (SCC) containingfly ash 

and polypropylene fibers has been developed. Materials studied experimentally contained 0 %, 10 %, 20 % and 30 wt. % 

fly ash replacing cement, with four fiber contents at 3, 6, 9 and 12 kg/m3 in each concrete. Water/cement ratio and 

superplasticizer content were kept constant at 0.40 % and 1.0 % of cement content, respectively. In our models, 

properties of fresh and hardened concrete containing fibers, fly ash and cement content were predicted for fresh as well 

as a function of time for hardened concrete.The results obtained from the fuzzy logic prediction model were compared 

with the average results of the experiments and were found to be remarkably close to one another. Polypropylene fibers 

provide a reinforcement, the use of fly ash lowers environmental contamination, while satisfactory properties are 

obtained. 

Keywords: fuzzy logic, self-compacting concrete, fly ash, polypropylene fibers. 

 

1. INTRODUCTION
∗

 

Concrete, one of the principal structural materials and 

widely used around the world, is a heterogeneous material 

consisting of cement, water, sands and aggregates [1 – 7]. 

Although its heterogeneous structure causes some 

undesirable effects [8] concrete remains an indispensable 

construction material – while allowing engineers to 

incorporate many materials into it. Therefore, 

developments in the construction industry throughout the 

world along with the necessity for new concrete 

applications have led to many studies on types of concretes 

[9, 10]. 

Self-Compacting Concrete (SCC), a new kind of High 

Performance Concrete (HPC) with excellent deformability 

and segregation resistance, was first developed in Japan in 

1986. It is a special kind of concrete that can flow through 

and fill the gaps around reinforcement and in corners of 

molds without any need for vibration and compaction 

during the placing process [11, 12]. Due to this property, 

SCC's use in civil engineering has gradually increased over 

the last several years [13]. Generally, SCC is produced 

using a new generation of superplasticizers to reduce the 

water/binder ratio. Additionalcementitious or inert 

materials such as limestone powder, natural pozzolans or 
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fly ash can be used to increase the viscosity and fresh 

concrete workability and also to reduce the cost of SCC. 

The term “fiber-reinforced concrete” is defined by 

American Concrete Institute in their standard ACI 116R, 

Cement and Concrete Terminology, as a concrete 

containing dispersed randomly oriented fibers. Inspired 

from the ancient applications of techniques of natural 

fibers (straws, chips, horse tails, goat hair, plumes, etc.), 

artificial fibers are commonly used in order to improve 

mechanical properties of concrete [14]. Many different 

kinds of fibers such as metallic, polymeric, coated, 

uncoated or modified by irradiation, have been used in 

concrete technology because of their specific advantages 

[15 – 20]. Especially, steel fibers have improved several 

concrete properties. Thus, tensile, flexural, impact 

andfatigue strength, wear resistance, deformation 

capability, load bearing capacity after cracking and 

toughness properties of concrete have been significantly 

improved by the use of steel fibers [21 – 26]. The reason is 

simple,steel fibers have high elastic modulus and stiffness. 

Steel fiber reinforced concretes (SFRCs) have been used in 

several areas of infrastructure and industrial floors, 

overlays, and channel lining; laboratory tests and field 

applications have shown SFRCs to be more durable than 

plain concrete subjected to high water flow [8, 27]. 

However, steel fibers easily appear at surface concrete and 

suffer from rusting, this apart from electric conductivity 

and magnetic field problems. If a SFRC is used in the 
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runway of an airport, in high speed railway systems, or in 

nuclear power plants, safety problems might appear 

[18, 23]. Moreover, steel fibers increase the unit weight of 

concrete. 

Recent progress in polymeric materials involves the 

use of polypropylene (PP) fibers. Thus, a new generation 

of PP fibers may be a potential replacement for steel fibers 

since the former have good ductility, fineness, and are 

dispersible easily – so they can restrain propagation of 

cracks [18]. We note that apart from linear fibers also two-

dimensional PP fiber mats find good uses [28].  

On the other hand, it is well-known that incorporation 

of the fibers into the concrete reduces the workability of 

concrete, a handicap for on-site applications. Thus, one of 

the ways to compensate for the workability loss associated 

with the inclusion of the fibers is by combination of SCC, 

fibers and fly ash (FA). 

The use of fly ash reduces the demand for cement, fine 

fillers and sand that are required in SCC [29, 30]. Fly ash, 

a by-product of coal power plants, has been reported to 

improve mechanical properties of concrete such as freeze-

thaw resistance, sulphate resistance, weaken alkali-silica 

reaction, enhancedurability and abrasion resistance. Also 

shrinkage, permeability [31], chloride penetration, 

corrosion [32] and wear loss of hardened concrete [33] are 

decreased. The usage of industrial waste materials in 

concrete, in regards to both environmental pollution and 

the positive effect on a country’s economy, is beyond 

dispute. Utilization of waste material in construction 

industry reduces certain technical and environmental 

problems of plants and decreases electric costs – apart 

from reducing the amount of solid waste, greenhouse gas 

emissions and enhancing conservation of existing natural 

resources. In Turkey, the annual fly ash production is about 

18 million tons – more than the rest of all industrial wastes 

created in the country [34]. Unsalvaged FA causes 

environmental pollution and its storage costs is very  

high [31]. 

An area that has not been extensively examined 

previously is the fiber additions on the mechanical and 

durability properties of SCC with fly ash. Researchers have 

studied fly ash concrete and fiber reinforced concrete 

separately; clearly investigation of reinforcing fibers 

together with fly ash in concrete is an area that deserves an 

investigation.In this situation, we have studied effects of 

incorporating 10 %, 20 % and 30 % FA and 3, 6, 9 and 

12 kg/m3 monofilament polypropylene hybrid fibers into 

the SCC on physical and mechanical properties of fresh 

and hardened concretes. 

In 1965, Zadeh [35] pioneered the development of 

fuzzy logic (FL). Aristotelian logic has two possibilities 

only. Zadehprovided a mathematical tool which enables us 

to describe and handle imprecise notions such as “a set of 

all real numbers which are much greater than 1”, “a set of 

beautiful women,” or “a set of tall men”. In this work we 

have used also the FLapproach to develop a method of 

estimating properties of concrete, fresh and hardened. In 

our model, cement content, fly ash content and PP 

fiberscontent constitute input.Slump flow (S), t500 flow 

time (T), V-funnel (V) and J-ring (J) values of the fresh 

concrete are predicted.  

2. MATERIALS  AND  EXPERIMENTAL 

TECHNIQUES 

Dry and clean natural river sand (NRS), crushed stone 

I (Cst-I) and crushed stone II (Cst-II) were used in concrete 

mixture. The CSthad 12 mm maximum aggregate size with 

0.93 % water absorption value and its density at saturated 

surface dry (SSD) condition was 2.70 g/cm3. The water 

absorption values of the NRS and CS sands used were 

3.02 % and 2.91 % and their densities at SDD condition 

were 2.67 g/cm3 and 2.69 g/cm3, respectively. The 

gradations of aggregates and the grading of the mixed 

aggregate are presented in Table 1. 

Table 1. The gradations of aggregates and the grading of the 

mixed aggregate 

 NRS Cst-I Cst-II Mixture 

75 µm 1 0 0 7.7 

150 µm 5 0 0 11 

300 µm 18 0 0 15.5 

600 µm 32 0 0 21.9 

1.18 mm 53 0 0 30.7 

2.36 mm 81 0 1 43.5 

4.75 mm 96 0 1 61.6 

9.5 mm 100 50 12 87.2 

12.5 mm 100 100 100 100 

Fineness modulus 4.1 7.5 7.9 5.2 

The cement used in concrete mixtures was Portland 

cement, CEM I 42.5 R. Physical and mechanical properties 

and chemical analysis of cement are presented in Tables 2 

and 3, respectively. 

Table 2. Physical and mechanical properties of Portland cement 

Compressive strength (MPa) Flexural strength (MPa) 

2 Days 7 Days 28Days 2 Days 7 Days 28Days 

22.5 36.6 47.8 3.7 5.6 6.9 

Initial 

setting time 

(minute) 

Final setting 

time (minute) 

Le 

Chatelier 

(mm) 

Specific 

gravity 

(g/cm3) 

Blaine 

(cm2/g) 

145 195 1 3.15 4150 

Table 3. Chemical analysis of Portland cement and fly ash 

(weight %) 

Compound Portland cement Fly ash 

Total SiO2 22.90 57.2 

Al2O3 5.32 25.53 

Fe2O3 3.63 6.01 

CaO 55.83 1.14 

MgO 1.99 2.42 

SO3 2.62 0.16 

Cl 0 0.014 

LOI* 4.20 1.12 

Free CaO 0.82 0.12 

Total Admixture 19.45 – 

* Loss of ignition. 
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The class of FA used in this study was classified as  

F fly ash according to ASTM C 618 [36]. Its chemical 

composition is presented in Table 3. The Blaine fineness 

was 5230 cm2/g. Specific gravity was 2.1 g/cm3. The 

increment of the cement paste in SCC is very important 

because it is an agent that carrier the aggregates [37]. 

We have applied a novel modified polycarboxylic 

ether superplasticizer (SP). The admixture is light brown in 

color, with a specific gravity of 1.08, pH value = 5.7 and 

solid content = 40 wt. %. In developing a SCC, usually a 

new generation polycarboxylic based superplasticizers are 

used together with either some chemical or mineral 

admixtures that provide viscosity values in the appropriate 

range. 

The PP monofilament fibers used are wavy-shape, 

45 mm long with 1 mm of diameter, and density = 0.91 

g/cm3. Their elastic modulus is 5.88 GPa, and the tensile 

strength is 320 MPa. 

Concrete compositions studied are listed in Table 4. 

Binder content and water-binder ratio was 450 kg/m3 and 

0.35, respectively. Fly ash was replaced with cement at 

10 %, 20 % and 30 % ratios. The dosage of 

superplasticizer was 1.0 % of the binder content of 

concrete. The fibers were incorporated into the concrete in 

the content of 3, 6, 9 and 12 kg/m3. 

Table 4. Mixture proportions of the concrete (kg/m3) 

Codes Cement FA Water SP Fiber 
Fine 

aggregate

Coarse 

aggregate

A1 450 0 158 4.5 0 967 807 

A2 450 0 158 4.5 3 964 804 

A3 450 0 158 4.5 6 959 799 

A4 450 0 158 4.5 9 955 796 

A5 450 0 158 4.5 12 950 792 

B1 405 45 158 4.5 0 961 801 

B2 405 45 158 4.5 3 957 797 

B3 405 45 158 4.5 6 952 793 

B4 405 45 158 4.5 9 947 790 

B5 405 45 158 4.5 12 942 786 

C1 360 90 158 4.5 0 954 795 

C2 360 90 158 4.5 3 949 791 

C3 360 90 158 4.5 6 945 787 

C4 360 90 158 4.5 9 940 783 

C5 360 90 158 4.5 12 935 779 

D1 315 135 158 4.5 0 947 789 

D2 315 135 158 4.5 3 942 785 

D3 315 135 158 4.5 6 937 781 

D4 315 135 158 4.5 9 932 777 

D5 315 135 158 4.5 12 928 773 
 

The concrete mixtures were prepared in a laboratory 

mixer with the capacity of 60 dm3. In a typical mixing 

procedure, the materials were placed in the mixer in the 

following sequence: first course aggregates and fine 

aggregates and fibers together, followed by cement, 

initially dry material mixed for 1 minute, then addition of 

90 wt. % of water. After 1.5 minutes of mixing, the rest of 

mixing water together with the SP was added. All batches 

were mixed for a total time of 5 minutes. Specimens for 

the testing of the hardened material properties were 

prepared by direct pouring of concrete into molds without 

compaction. 

From each concrete mixture, six specimens were cast 

in cylindrical molds of 150 mm diameter and 300 mm 

height. Three 150 mm cubes were cast. The cubes were 

used for the compressive strength testing. The cylinders 

were used for elasticity modulus and splitting tensile 

strength tests. After demolding, the specimens were placed 

in a saturated limewater bath until the time of testing. 

Curing was performed in accordance with ASTM C511 

[38] standard. It is well known that adequate curing of 

concrete is very important not only to achieve the desired 

compressive strength but also to make durable concrete. 

Compressive strength tests were carried out in accordance 

with ASTM C39 [39]. Splitting tensile strength tests were 

performed according to ASTM C496 [40]. Flexural 

strength and elasticity modulus were determined according 

to ASTM 293 [41] and ASTM C469 [42], respectively. 

Numerous methods are available for determination of 

rheological behavior of materials with or without fiber 

reinforcement - including those used earlier by some of us 

[43 – 45]. One can perform rheological testing [46], which 

for SCC is applied to determine viscosity and yield 

strength in the plastic state. Rheology, however, is 

laboratory oriented and not very convenient for field use. 

Therefore, other field-oriented test methods are used in 

quantifying properties and workability of fresh SCC. We 

have determinedself-compaction abilities of the mixtures 

according to standards of Self Compacting Concrete 

Committee of European Federation for Specialist 

Construction Chemicals and Concrete Systems (EFNARC) 

[47]. 

We have performed three types of workability tests on 

fresh concrete mixtures, namely slump flow test, J-ring test 

and V-funnel test. 

The slump flow test is used to evaluate the horizontal 

free flow (deformability) of SCC in the absence of 

obstructions. The test method is very similar to that for 

ordinary concrete. The difference is that, instead of the loss 

in height, the diameter of the spread concrete is measured 

in two perpendicular directions and recorded as slump 

flow. The higher the slump flow, the greater is the 

concrete’s ability to fill formworks. During the slump flow 

test, the time required for the concrete to reach a diameter 

of 500 mm is also measured and recorded as t500. This 

parameter is an indication of the viscosity of concrete and 

indicates how stable the concrete is. A lower time points to 

a greater fluidity or smaller workability loss. 

J-ring test is used to determine the passability of the 

concrete. It is an extension of the slump flow test in which 

a ring apparatus is used with the inside diameter h1 and the 

outside diameter h2. The flow of mix is obstructed by the 

bars, thereby creating a difference of levels in the concrete. 

This gives an indication of the passing ability and 

restricted deformability of concrete [47]. 

The V-funnel test is used to determine the fluidity or 

viscosity of concrete. The V-funnel is filled with concrete; 

the time it takes for the concrete to flow through the 

apparatus is measured. Clearly good flowable and stable 

concrete would take a short time to flow out. The V-funnel 

test results are related to material viscosity [47].   
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3. EXPERIMENTAL RESULTS 

3.1. Fresh concrete 

Properties of fresh SCC as a function of fly 

concentration and fiber content are presented in Fig. 1. 

We shall now look for possible correlations between 

different properties. Slump flow might be a decisive 

property.In Fig. 2 we demonstrate a relationship between 

slump flow and the other properties. The correlation 

parameter R2 = 1 would represent a perfect agreement of 

calculated and experimental values. 

3.2. Hardened concrete results 

Several properties are presented in Table 5 as a 

function of time in days. 
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Fig. 1. Effect of fiber content and fly ash replacement on the fresh properties of concrete 
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Fig. 2. Relationship between slump flow and other fresh concrete tests 
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Table 5. The results of hardened concrete properties of SCC 

Codes 
Comp. Str. (MPa) Flexural Splitting E mod 

days 7 days 28 days 90 days 7 days 28 days 90 days 7 days 28 days 90 days 7 days 28 days 90 

A1 62.1 76.4 85.6 7.5 7.7 8.1 4.1 5.9 6.8 43.6 46.8 48.7 

A2 65.4 78.2 88.1 7.8 8.1 8.2 4.4 6.2 7.3 45.1 46.2 48.9 

A3 63.6 80.4 90.3 8.0 8.7 9.2 4.3 6.5 7.7 44.3 47.3 49.6 

A4 65.7 79.8 89.7 8.4 9.1 10.1 4.5 6.3 7.4 45.5 47.0 49.2 

A5 62.6 78.0 87.6 9.5 10.6 11.6 4.2 6.0 7.0 44.7 46.7 48.3 

B1 57.4 68.6 78.2 6.8 6.9 7.2 3.8 5.0 6.3 42.8 44.9 47.3 

B2 57.9 70.3 79.5 7.1 7.5 7.9 3.8 5.3 6.5 43.3 45.0 47.8 

B3 58.5 71.4 80.4 7.8 7.9 8.0 3.9 5.6 6.4 44 45.8 48.1 

B4 60.2 73.8 82.6 8.0 8.5 8.7 4.1 5.7 6.7 43.8 46.2 48.3 

B5 59.7 72.7 81.0 8.7 9.0 9.3 4.0 5.5 6.5 44.3 45.6 47.9 

C1 53.8 65.2 72.4 6.3 6.5 6.8 3.6 4.8 5.0 41.5 44.7 46.3 

C2 54.6 67.2 74.7 6.6 6.8 6.9 3.8 5.1 5.4 43.2 45.6 47.1 

C3 54.0 66.4 74.8 6.9 7.1 7.2 3.6 4.9 5.7 42.9 44.8 46.8 

C4 55.1 67.8 76.1 7.2 7.4 7.4 4.0 5.1 6.0 43.8 45.2 47.5 

C5 54.5 66.3 75.0 7.7 7.8 7.9 3.7 5.0 5.6 43.7 44.5 47.3 

D1 50.3 60.9 68.3 5.9 5.9 6.0 3.4 3.9 4.5 40.8 42.7 44.3 

D2 51.5 62.3 69.6 6.4 6.6 6.8 3.6 4.3 4.7 41.7 43.2 44.5 

D3 53.1 64.7 71.0 6.7 6.9 6.9 3.8 4.7 5.0 41.8 43.8 44.9 

D4 52.6 63.1 72.8 6.9 7.2 7.4 3.6 4.6 5.3 42.3 42.9 45.2 

D5 49.8 61.8 69.3 7.2 7.5 7.6 3.3 4.3 4.7 41.4 43.6 44.8 
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Fig. 3. Changes of hardened properties with time for A1 
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Fig. 4. Relationship between parameters of 90-days concretes vs. 

compressive strength 

An example of relationships between concrete strength 

and concrete age are presented in Fig. 3 for the A1 

material.  Similar results have been obtained for other 

materials but are not included for brevity. In all cases the 

correlation coefficients R2 are as good as those displayed in 

that Figure. 

Compressive strength of concrete is known as the most 

important parameter representing the material quality. 

While there is no doubt that the splitting tensile strength, 

flexural strength and modulus of elasticity all increase with 

increase in the compressive strength, there is no agreement 

on the precise form of the relationships. Our attempt to 

provide such relationshipsfor SCC is presented in Fig. 4. 

4. FUZZY LOGIC APPROACH 

4.1. Basics of the approach  

The main idea of fuzzy set theory is quite intuitive and 

natural: instead of determining the exact boundaries as in 

an ordinary set, a fuzzy set allows no sharply defined 

boundaries because of generalization of a characteristic 

function to a membership function [48, 49]. Fuzzy logic 

concept provides a natural way of dealing with problems in 

which the source of imprecision is the absence of sharply 

defined criteria rather than the presence of random 

variables. Fuzzy approach considers cases where linguistic 

uncertainties play some role in the control mechanism of 

the phenomena concerned. Here uncertainties do not mean 

random, probabilistic and stochastic variations, all of 

which are based on the numerical data. Zadeh was 

motivated in his work on fuzzy logic by the observation 

that the key elements in human thinking are not numbers 

but levels of fuzzy sets. Further, he saw each linguistic 

word in a natural language as a summarized description of 

a fuzzy subset in a universe of discourse representing the 

meaning of the word. In consequence, he introduced 

linguistic variables as variables whose values are sentences 

in a natural or artificial language[50]. 
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Since practitioners of Materials Science and 

Engineering, Mechanics and related disciplines are not 

necessarily familiar with the fuzzy set theory, before 

presenting our own contributions we discuss basic tenets of 

this approach. The basic elements of each fuzzy logic 

system are, as shown in Fig. 5, rules, fuzzifier, inference 

engine, and defuzzifier. 

Input data are most often crisp values. The task of the 

fuzzifier is to map crisp numbers into fuzzy sets (cases are 

also encountered where inputs are fuzzy variables 

described by fuzzy membership functions). Models based 

on fuzzy logic consist of “If-Then” rules. A typical “If-

Then” rule would be: 

IF the value of dosage is “low” and the value of fly as 

is “low” and the value of fiber is “middle” THEN the result 

Xn is “value of output” The fact following “If” is called a 

premise or hypothesis or antecedent. Based on this fact we 

can infer another fact that is called a conclusion or 

consequent (the fact following “Then”). A set of a large 

number of rules of the type: "If premise Then conclusion" 

is called a fuzzy rule base.  

 

 
Fuzzifier 

Input 
Defuzzifier 

Rules Inference 

Crisp 

 

Fig. 5. Basic elements of a fuzzy logic [49] 

We would like to note that - in classical expert systems 

– rules are derived exclusively by human experts. In fuzzy 

rule-based systems, the rule base is formed with the 

assistance of human experts; recently, numerical data has 

been used as well in a combination of numerical data with 

human experts. An interesting case appears when a 

combination of numerical information obtained from 

measurements and linguistic information obtained from 

human experts is used to form the fuzzy rule base. In this 

case, rules are extracted from numerical data in the first 

step. In the next step this fuzzy rule base can (but need not) 

be supplemented with the rules collected from human 

experts. The inference engine of the fuzzy logic maps 

fuzzy sets onto fuzzy sets. A large number of different 

inferential procedures are found in the literature. In most 

papers and practical engineering applications, a minimum 

inference or product inference is used. During 

defuzzification, one value is chosen for the output variable. 

The literature also contains a large number of different 

defuzzification procedures. The final value chosen is most 

often either the value corresponding to the highest grade of 

membership or the coordinate of the center of gravity [49]. 

The fuzzy approach considers the cases where 

linguistic uncertainties play some role in the control 

mechanism of the phenomena concerned [51]. The key 

idea in fuzzy logic is allowance of partial belongings of 

any object to different subsets of the universal set - instead 

of belonging to a single set fully. Partial belonging to a set 

can be described numerically by a membership function 

which assumes values between 0 and 1 inclusively. For 

instance, Fig. 6 shows a typical membership function for 

small, medium and large class size in an universe U. Thus, 

these verbal assignments are fuzzy subsets of the universal 

set. In Figure 6 set values less than 2 are considered 

“small”; those between 4 and 6 are “medium”; while 

values larger than 8 are definitely “large”. However, 

intermediate values such as 2.2 partially belong to the 

subsets “small” and “medium”. In fuzzy terminology 2.2 

has a membership value of 0.9 in “small” and 0.1 in 

“medium”, but 0.0 in “large” subsets. The literature is rich 

with references concerning the ways to assign membership 

values or functions to fuzzy variables. Among these ways 

are intuition, inference rank ordering, angular fuzzy sets, 

neural networks, genetic algorithms, inductive reasoning, 

etc. Especially, the intuitive approach is used rather 

commonly because it is simply derived from capacity of 

humans to develop membership functions through their 

own innate intelligence and understanding. Intuition 

involves contextual and semantic knowledge about an 

issue; it can be also involve linguistic truth values about 

this knowledge [50]. 
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Fig. 6. Fuzzy subsets [50] 

Even if the measurements are carefully carried out as 

crisp quantities, they can be fuzzified. Furthermore, if an 

uncertainty arises because of imprecision, ambiguity or 

vagueness, then the variable is fuzzy and can be 

represented by a membership function. Unlike the usual 

constraint where, say, the variable in Fig. 6 must not 

exceed 2, a fuzzy constraint takes the form as saying that 

the same variable should preferably be less than 2 and 

certainly should not exceed 4. This is tantamount in fuzzy 

sets terms that values less than 2 have membership of 1 but 

values greater than 4 have membership of 0 and values 

between 2 and 4 would have membership between 1 and 0. 

In order to simplify the calculations in practical 

applications, usually the membership function is adopted 

as linear. The objective then can be formulated as 

maximizing the minimum membership value; this has the 

effect of balancing the degree to which the objective is 

attained with degrees to which the constraints have to be 

relaxed from their optimal values [51]. Fuzzy has recently 

been used and successfully applied in a wide range of 

scientific areas by many researchers, and it is obtained 

optimal results [49 – 55]. 
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4.2. Model Construction 

We have developed a fuzzy logic model prediction for 

V-funnel, t500, J-ring, slump flow and slump diameter 

testing results. SCCs containing different cement, fly ash 

and fiber contents were considered – fresh concretes as 

well as hardened ones so that time is a variable in the latter 

case.  

Experimental results were used to train modelsin the 

design of fuzzy systems. To use sample data and derive the 

necessary rule base by the fuzzy inference procedure is a 

very common method in defining the fuzzy rule base. A 

small numbers of membership functions have been used 

because the model becomes exponentially more complex as 

the number of variables or membership functions increases. 

Concentrations of fibers, fly ash and cement were used 

as input variables to predict fresh concrete properties – 

such as slump flow, V-funnel, t500 and J ring values as 

output parameters. Then fresh SCCs properties were used 

as input parameters to predict hardened concrete properties 

including compressive strength, flexural strength, splitting 

tensile strength and elasticity modulus. 

In the models, membership functions of cement, fly 

ash and fiber were 4, 4 and 5, respectively. For prediction 

of fresh concrete properties, 10 membership functions of 

output parameters were defined as X1, X2, ..., X10 to ensure 

sufficient accuracy ofthe output. For hardened concrete 

properties we have 12 membership functions of output, 

that isX1, X2, ..., X12. The number of membership functions 

was determined according to accuracy of the model and 

range of data exchange.After selection of membership 

functions, 80 (4×4×5) rules were formed in modeling. 

For control purposes, fuzzy sets can be used to set up 

rules as follows:  

Rule1: IF “dosage” is very high and “fly ash” is low 

and “fiber” is very low          THEN X1; 

Rule2: IF “dosage” is high and “fly ash” is low and 

“fiber” is low                         THEN X2; 

Rule3: IF “dosage” is high and “fly ash” is very high 

and “fiber” is very high         THEN X3; 

Rulen: IF “dosage” is n and “fly ash” is n and “fiber” is 

n                                             THEN Xn. 

A block diagram used in fuzzy modelling of fresh 

concrete properties, a block diagram used for fuzzy 

modelling of hardened concrete properties and a block 

diagram used for fuzzy modelling of hardened concrete 

properties from fresh SCCs properties are presented 

respectivelyin Figs. 7 – 9. 

4.3. Fuzzy logic results for fresh concrete 

The results from the use of our fuzzy model are 

compared with experimental ones for fresh concrete in 

Fig. 10. Prediction results with fuzzy logic of fresh 

concrete properties are similar to experimental results and 

found remarkably close to each other. 
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Fig. 7. Block diagram used for fuzzy modelling of fresh concrete properties 
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Fig. 8. Block diagram used for fuzzy modelling of hardened concretes properties 
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Fig. 9. Block diagram used for fuzzy model prediction of hardened properties from fresh concretesproperties 
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Fig. 10. Fuzzy model predictions and experimental results for fresh concretes 

 

4.4. Prediction results for hardened concretes 

Properties of fresh concretes can be used also as 

indicators of performance of hardened concretes and their 

durability. Needless to say, properties of concretes as a 

function of hardening time provide the 'real' information. 

Comparison of predictions from our fuzzy model with 

experimental ones is presented in Fig. 11.  

As easily seen in Fig. 11, our model provides results in 

good agreement with experimental values of all parameters 

that have been measured. 
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Fig. 11. Predicted and experimental results for hardened concretes 
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Fig. 12. Comparisons of experimental and developed model results for hardened concrete properties 
 

4.5. Prediction of propertiesof hardened concretes 

from those of fresh concretes 

Results of those predictions are displayed in Fig. 12. 

Agreement with the experimental results is comparable to 

that in Fig. 11. The correlationcoefficients R2 rangein 

Fig. 11 between 0.951 and 0.990, while in Fig. 12 that 

range is between 0.949 and 0.985. 

5. CONCLUSIONS 

The combination of SCC + fibers + FA has provided 

sufficient strength characteristics of concrete and improved 

workability. Inclusion of fly ash, an industrial waste 

material, lowers environmental pollution and has a positive 

effect on economy.  

We have used fuzzy logic approach to predict fresh 

concrete properties from variables representing the 
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concrete mixture, to predict similarly hardened concrete 

properties, and finally hardened concrete properties from 

fresh concrete properties. The advantage of the proposed 

approach is that the behavior of concrete can be predicted 

without lengthy trial-and-error experiments that increase 

material waste and also increase production costs. We have 

thus predicted from our fuzzy logic approach several 

properties quite successfully: slump flow, V-funnel, J-ring 

and slump diameter – all on the basis of fly ash content 

(%), cement content (kg/m3) and fiber content (kg/m3). 
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