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Abstract

Molecular dynamics simulations were employed to study the mechanical properties and true stress development in amorphous
polymeric materials. As expected, the true stress levels are much higher than those indicated by the engineering stress. However, the
true stress behavior was found to be not only quantitatively but also qualitatively different from that of the engineering stress. Highly
localized deformation results in abrupt increases of the true stress in certain regions, favoring crack formation and propagation. The
computer-generated materials exhibit viscoelastic recovery curves similar to those seen in experiments. The recovery process is non-
homogeneous and affected by the spatial arrangement of the amorphous chains. The loading conditions determine the preferential
deformation mechanisms and influence the extent of recovery. Some deformation mechanisms are not recovered and contribute to
permanent deformation.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

As argued before, service performance and reliability
of polymeric materials are of interest to all, not only to
scientists and engineers [1,2]. As polymers become more
widely used and in many demanding applications are
replacing metals and ceramics, understanding their
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behavior becomes a critical issue. However, the proper-
ties of polymers are often difficult to characterize and
even more difficult to predict, due to their complex
structure and to the variety of factors involved, namely
the time-dependent behavior, the processing history and
their anisotropic character.

Computer simulations have an enormous potential to
provide better understanding of the behavior and prop-
erties of polymeric materials. As eloquently argued by
Fossey [3], simulations provide information not readily
accessible experimentally; this either due to the prohibi-
tively difficult nature of the tests, the inadequacy of
existing equipment and techniques to study a particular
phenomena, or other impediments. A significant advan-
tage of computer simulations is the ability to create

mailto:rsimoes@dep.uminho.pt
mailto:amcunha@dep.uminho.pt
mailto:amcunha@dep.uminho.pt
mailto:brostow@unt.edu


320 R. Simões et al. / Computational Materials Science 36 (2006) 319–328
conditions that cannot be replicated in a controlled
experimental environment. Even more importantly, they
can be used to determine the effects of one system vari-
able at a time.

As pointed out by Gilman [4], not all computer sim-
ulations are of interest, particularly those which only
confirm what is already known from experiments. This
paper meets this challenge, introducing a method for
the determination of true stress response of computer-
generated materials (CGMs). Results on viscoelastic
behavior of simulated amorphous polymers are also
reported.

It is important to point out that the simulations pre-
sented and discussed in this paper were not performed
with the intent of replacing experiments but rather to
complement them. The concomitant use of computer
simulations and experiments should produce a synergis-
tic effect, enabling a more complete understanding of the
properties and behavior of polymeric materials.
2. Applications of computer simulations to polymer
behavior and properties

At least three simulation approaches have been
widely used by the scientific community: the Monte
Carlo (MC), the Brownian dynamics (BD), and the
molecular dynamics (MD) methods [5,6]. MD is the
method preferred by our research group for the present
purpose of studying the time-dependent deformation of
polymeric materials. This method was originally devel-
oped by Alder and Wainwright, with the intent of deter-
mination of phase diagrams of systems of hard spheres
[7]. At a later stage, continuous potentials allowed a
more realistic response of the system. Rahman was the
first to introduce Mie potentials (often called Lennard-
Jones potentials) in the MD simulations [8], which cre-
ated the basis for most of the work done in this area
since then.

Atomistic simulations have been extensively used to
study molecular-level phenomena in polymers [9–12].
Termonia and Smith have used the kinetic model of
fracture to simulate the mechanical behavior of poly-
mers [13–15] and spider silk fibers [16]. Fossey and Tri-
pathy [17] have also dealt with this topic, having
combined the method of Theorodou and Suter [10] to
form a polypeptide glass with Termonia�s spider silk
elasticity three-phase system model.

A different approach to the mechanics of polymers
consists in the use of linear and non-linear fracture
mechanics [18–20], including the essential work of frac-
ture (EWF) method. An extensive review on fracture
mechanics approaches used to describe the behavior of
polymers has been provided by Nishioka [21]. Binienda
and co-workers have also employed such methods in the
analysis of crack development [22,23].
Bicerano has employed numerical simulations and
the Monte Carlo method to simulated stress–strain
curves of rubbery amorphous and semi-crystalline poly-
mers [24], where the amorphous rubbery phase exhibits
both chemical crosslinks and physical entanglements.
He had previously proposed a model for studying dy-
namic relaxations in amorphous polymers [25].

A review paper on both continuum mechanics and
molecular models for describing yield in amorphous
polymers has been provided by Stachurski [26], includ-
ing a discussion on computer modeling results from dif-
ferent authors in view of molecular deformation and
yield theories. In more recent work the same author
employs micro-mechanics theories to model deforma-
tion mechanisms in amorphous polymers, obtaining
simulated stress vs strain curves in qualitative agreement
with experimental data [27].

The MD method is widely used for simulations of
material systems, and can be applied from the atomistic
level to the mesoscale. One of its major advantages over
alternative methods is the use of time as an explicit
variable, allowing for simulation of both equilibrium
properties and time-dependent ones—an essential fea-
ture for simulation of viscoelastic materials. The MD
method considers a system of N particles (statistical
chain segments in this case), each described by three
Cartesian coordinates and three momentum
components along the main axes. In order to obtain
the time-dependent behavior of the system, these six
variables are calculated at every time step of the
simulation. Typically, the status of the system is
analyzed every several thousand time steps (every 2000
time steps in the simulations reported here).

MD methods have been used to study a wide variety
of phenomena, in many different fields of work. Smith
et al. [28] used MD to simulate the X-ray scattering pat-
tern. Gerde and Marder [29] investigated friction and its
connection to the mechanism of self-healing cracks.
Theodorou et al. have investigated the phenomena of
diffusion [30], permeation [31], elongational flow [32],
and stress relaxation [33]. However, they have per-
formed their simulations mostly at the atomistic level,
following a different approach from the one employed
in the present study. Other relevant MD simulations ap-
plied to materials science include the thermodynamic
properties of simple fluids and polymer melts [34,35],
the melting phenomena including that of thin layers
on a substrate [36,37], and transport of fluids through
polymer membranes [38].

Simulations of stress relaxation in metals and poly-
mers have been previously reported [39,40]. The pres-
ence of defects was found to greatly affect the
response, increasing by several orders of magnitude
the time span for relaxation. These simulations have
shown also that stress relaxation is mainly achieved by
plastic deformation in the vicinity of defects. A higher
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force is required to initiate a crack in an ideal lattice, but
then the force is sufficient to cause quick propagation.
The simulated stress–relaxation curves mimic all the
essential features of experimental curves and also are
in accordance with the Kubát cooperative theory of
stress relaxation in materials [41].

More recently, computer simulations were employed
in the study of mechanical properties [5] and the crack
formation and propagation phenomena in polymer
liquid crystals (PLCs) [42]. This works goes in parallel
with our predictions of long term behavior of PLCs
from short term tests [2] and also using statistical
mechanics to determine PLC behavior [43,44]. One of
the key questions is where cracks form in the material
and how they propagate through it. The cracks can be
equally expected to form in the flexible matrix because
of its relative weakness or inside the reinforcing phase
because of its relative rigidity. The simulations results
have indicated that cracks appear preferentially between
second phase agglomerates in close proximity, growing
next to the interface between the two phases. Cracks
can then propagate through the flexible phase, including
connecting to other cracks.

A similar approach was also developed to perform
the first simulations of scratching in amorphous materi-
als [45]. The results show how local structure affects
scratch resistance and recovery; preferential migration
of a rigid second phase to the surface of a two-phase
material can improve its tribological performance.

State-of-the-art in computer simulations of polymeric
materials includes the work by Grest on poly(dim-
ethylsiloxane) [46,47], which exhibits excellent agree-
ment with X-ray scattering measurements. Grest and
Plimpton have also investigated several methods for
the equilibration of long chain polymer melts [48].
Rottler and Robbins have studied shear yielding in
glassy polymers under triaxial loading [49], as well as
the growth and failure of crazes in amorphous glassy
polymers [50,51].
3. Simulation method

The model used for simulation considers a polymeric
chain as a set of statistical segments (or ‘‘beads’’), where
each statistical segment represents several repeating
units of the material. This model, advocated by Flory
[52], allows for simulations at larger scale than those
using the united-atom model or those performed at the
atomistic level. The statistical segment model is also
often named coarse grain model. Section 4 covers the
procedure for creating the materials on the computer.

Each of the segments interacts with its neighbors
through pair-wise interactions. These are described by
a set of interaction potentials that differ for primary
(intra-chain) and secondary (inter-chain) bonds. A
spliced double well potential characterizes the strong
primary bonds, allowing for conformation transitions
as in real polymer chains. A much weaker Morse-like
potential is used for the secondary interactions. A de-
tailed description of the interaction potentials has been
previously provided [5].

The molecular dynamics (MD) method was used to
simulate the time-dependent behavior of the system,
with the time evolution calculated through a leap-frog
algorithm [53]. The advantages over other simulation
methods have been discussed before [5,42].

The employed MD simulation method assumes that
the forces on particles are nearly constant over very
short time periods—what defines the time step for the
simulation. The value of the time step was previously
discussed [40], together with a detailed description of
the time integration method. It can be shown that in
the limit of short time steps, this procedure samples
states accessible in the micro-canonical ensemble. How-
ever, additional features can be added to the algorithm
that allow one to specify the configurational tempera-
ture, or allow the simulation to access a range of
energies and/or pressures that correspond to either the
canonical or isothermal-isobaric ensembles.

When using the micro-canonical ensemble, one main-
tains the number of particles, volume and energy (NVE)
constant throughout the simulation. However, the simu-
lations reported in this paper were performed at
constant temperature (room temperature) to avoid an
effect of stochastic thermal forces; this because the pur-
pose is to study non-thermal sources of polymer fracture
[40]. Also, the material is allowed to deform freely along
all three axes. This implies that upon sufficient deforma-
tion, there is formation and propagation of cracks,
resulting in an increase of the internal free volume.
Thus, this procedure is closer to the isothermal ensem-
ble. When performing constant-temperature MD [53],
one has to rescale the velocities at each time step, based
on the kinetic energy of the system. Further details con-
cerning the simulation model were previously provided
[5,40].
4. Material generation procedures

In order to perform the simulations, one must first
create a polymeric material on the computer. Although
previous work reported results pertaining to two-phase
polymer liquid crystals, the present paper deals with
single-phase amorphous polymers.

The approach used to create the chains was initially
developed by Mom [54] and later modified [55]. The
method results in a system of self-avoiding chains on a
three-dimensional lattice. In previous 2D simulations,
the triangular lattice had been chosen for several reasons
stated before [39,55]. Particularly, this lattice results in a
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more realistic coordination number than, for example,
the square lattice. Likewise, for the present 3D simula-
tions the hexagonal close packed lattice was chosen over
the cubic lattice. The methodology is effective both for
completely filled lattices and those containing vacancies.

Initially, all segments in the material are positioned at
equidistant lattice locations, each segment representing
at this stage one chain of length 1. The system is then
searched for neighboring end-of-chain segments. At
the first stage, all segments fulfill this condition and
therefore a statistical function determines which seg-
ments bond together forming chains of length 2. The
chains continue to grow by bonding of adjacent
end-of-chain segments until no more segments can be
bonded in this way. When a segment can equally bond
to several others, the choice of which two segments to
connect is made at random.

While the procedure appears simple, the resulting
materials exhibit realistic features, such as a molecular
weight distribution and physical entanglements between
chains [55].

Two optimization algorithms can also be used in
order to increase the average molecular weight of the
chains and simultaneously introduce vacancies in the
material. These algorithms are based on the removal
of specific end-of-chain segments in order to allow new
bonds to be created.

A detailed description of the entire one- and two-
phase material generation procedure, including a brief
review of alternative methods to generate polymeric
materials on a computer, has been provided elsewhere
[55].
5. Simulation details

As noted in Section 1, obtaining true stress values is
an important objective. As discussed in textbooks of
Materials Science and Engineering (MSE), uniaxial
extension constitutes the most widely used mechanical
test [56]. During that extension the minimal cross-
sectional Am area of the specimen decreases. However,
one uses the initial cross-sectional area A0 determined
before application of the tensile force F. Thus, instead
of the true stress rt = F/Am one works with the engineer-

ing stress rn = F/A0. The failure of the specimen occurs
earlier than the engineering stress values would suggest.
As the present simulations have the capability to evalu-
ate both kinds of stress, the dependence of both param-
eters on time is presented below and the differences
between them discussed.

A specific procedure for the evaluation of changes of
Am with time during the simulations was developed. The
computer-generated tensile specimen is divided into a
number of sections; 10 is a convenient number—
although it could easily be changed to accommodate
materials of larger sizes or of complicated shapes. The
geometry of each section is monitored with time and
thus the true stress calculated and updated for each
section. By definition, the highest value of rt found in
any section is the true stress in the specimen. In experi-
ments, deformation is non-homogeneous, with a
localized necking and crack formation taking place.
Similar behavior is expected from the simulations, with
significant changes in the true stress with time.

During the simulation, a uniaxial external tensile
force is applied to the edges of the material along the
x-axis. Simulations can be performed with the value of
the external force increasing continuously until fracture
of the material is observed. Another option consists in
the force removal after a stipulated number of steps
and monitoring of the subsequent viscoelastic recovery.
Recovery, well known in polymer mechanics, has been
found also in tribology: significant shallowing of the
scratch depth with time, this both in experiments
[57,58] and in simulations [45].

Before the simulation begins, the segments are per-
turbed from their initial lattice positions by a random
small fraction (between 1/100 and 1/1000) of the average
intersegmental distance. This perturbation from the
ideal lattice positions is sufficient to originate a starting
configuration appropriate for the off-lattice simulation,
but without inducing exaggerated attractive or repulsive
forces during the first simulation steps.

At the first stage of the simulation the material is
allowed to equilibrate for 2000 time steps without any
external forces applied. The 2000 equilibration time
steps were found sufficient for the simulated materials
to recover from the induced perturbation mentioned
before, after which every segment is merely oscillating
around the equilibrium distance. After this quasi-equi-
librium state has been reached, an external force is im-
posed and the state of the system is monitored and
periodically recorded [5]. The external tensile force is
applied to all segments on both edges of the material
along the x-axis (see Fig. 1a).

Since the force is always applied along the x-axis, the
cross-section is defined in the y–z plane. All sections are
initially parallelepipeds of equal size, except for the sec-
tion number 10 (the last one) which will be created based
on the exact number of columns in the material. Each
section is defined by the positions of the segments at
their eight corners. These segments are assigned to each
section in the beginning of the simulation; their changes
in position along time determine the geometry of the sec-
tions. The initial division of the material in sections and
the definition of a section are shown in Fig. 1.

Each section can be characterized by two cross-
sectional areas, one defined by the leftmost segments
and the other defined by the rightmost segments along
the x-axis. These two areas are labeled Al and Ar in
Fig. 1b, and are simply called the left area and right area



Fig. 1. (a) Initial shape of one of the simulated computer-generated materials (CGMs); the external force is applied to the leftmost and rightmost
edge segments along the x-axis. (b) Definition of a section in a CGM.

Fig. 2. Changes in the geometry of the CGM sections during tensile
deformation.
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of the section. The average distance between these two
areas provides an average value of the length of the indi-
vidual section L. The average cross-sectional area A is
calculated for each section simply as the average of Al

and Ar. The volume of the section V can be approxi-
mated as the average section area multiplied by the aver-
age length of the section. The free volume Vf is then
calculated as the section volume minus the volume occu-
pied by all segments inside the box defined by the eight
corners of the section. The equations used for calculat-
ing variables related with the sections are:

Al ¼
y3 þ y4ð Þ � y1 þ y2ð Þ

2

� �
� z3 þ z2ð Þ � z1 þ z4ð Þ

2

� �

ð1Þ

Ar ¼
y7 þ y8ð Þ � y5 þ y6ð Þ

2

� �
� z7 þ z6ð Þ � z5 þ z8ð Þ

2

� �

ð2Þ

A ¼ Al þ Ar

2
ð3Þ

L ¼
P8

i¼5xi �
P4

i¼1xi

4
ð4Þ

V ¼ A� L ð5Þ

V f ¼ V � I � V 0 ð6Þ
Here, xi, yi and zi are respectively the x-coordinate,
y-coordinate and z-coordinate of corner i, V0 is the
volume of an individual segment (volume of a sphere
of radius 0.5), and I is the number of segments inside
the section.

As the material deforms under an applied force, the
geometry of the sections is monitored and used to calcu-
late the true stress levels. Fig. 2 shows the section geom-
etry change in a sample material at a certain instant
during a simulation of uniaxial deformation. The true
stress rt is calculated based on the minimum average
cross-sectional area of all sections:
rt ¼
F ext

min A1;A2; . . . ;A10

� � ð7Þ

There are some unavoidable approximations in-
volved in this analysis: (a) segments intersected by the
boundary between two sections are considered as
belonging to only one of them; (b) a few segments some-
times escape the overall boundaries of all sections. These
effects have been thoroughly tested and found to have
negligible effects on the final results. However, when
the system reaches large-scale deformation, the shape
of the sections sometimes becomes inadequate for calcu-
lating the cross-sectional area. In this case, the user must
determine up to which simulation step the values of the
true stress should be considered.

Since this work deals with phenomena at a molecular
level, one might argue with applying the general concept
of macroscopic strain at this scale. However, by employ-
ing again the sections concept, the strain is calculated
from the distance between the leftmost and rightmost
average cross-sectional areas of the material, that is, Al

of section 1 and Ar of section 10. Although typically
one would be interested in measuring the strain at break



Fig. 3. Evolution of the engineering stress (rn) and true stress (rt)
levels during the simulation of a fully flexible material under an
external force increasing up to fracture. Here, e is the strain.
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as a material property, the random nature of the crack-
ing phenomena makes it more useful in some cases to
measure the strain at a certain time into the simulation.
Since all simulations are performed with the same load-
ing conditions, that measurement is representative of the
mechanical history of the sample and of the material
response.

A single simulation was run for each set of condi-
tions. This was mainly imposed by the computation time
required for each simulation. The variability of results
from several simulations with the same set of conditions
was confirmed to be small enough not to affect the over-
all results discussed in this paper.

Note that in the results discussed below the time scale
is in simulation steps since the status of the material is
not recorded every time step, but only every 2000 time
steps. Thus, each simulation step corresponds to 2000
time steps.
Fig. 4. Evolution of the engineering stress (rn) and true stress levels
(rt) during the simulation of a fully flexible material under an external
force. The applied force increases for the first 15 simulation steps and
then remains constant up to fracture. Here, e is the strain.
6. Selected results

6.1. True stress vs nominal stress

In 3D materials of coiled chains, one can define a
cross-sectional area and monitor its changes during
deformation. As described above in Section 5, that
information can be used to calculate the true stress level
in the material and also changes in free volume during
deformation. The true stress can then be compared with
the engineering stress.

For this purpose, a fully flexible computer generated
material (CGM) within a simulation cell containing
approximately 1800 statistical segments has been simu-
lated under an external tensile force increasing at a con-
stant rate. In average there are 40–50 macromolecular
chains in each CGM. The chosen size of the simulation
cell was dictated by the available computational
resources in order to perform these simulations in a
reasonable time. The effect of the system size on the
response was verified for several similar CGMs. Within
the studied range, materials with different sizes still exhi-
bit the same tendencies and properties described in this
paper. The engineering and true stress levels during
deformation of the material are shown in Fig. 3.

Fig. 3 shows true stress values considerably higher
than those of the engineering stress. Clearly, this is
due to a decrease of the cross-sectional area that accom-
panies deformation. Moreover, the true stress increases
irregularly; the deformation mechanisms and the forma-
tion of micro-cracks are not continuous processes at the
molecular level, as shown before [59].

Considering the same material under different load-
ing conditions, with the force increasing at a constant
rate for 15 simulation steps and then kept constant until
fracture is observed, the engineering stress exhibits the
same pattern as the force and it would appear that the
material is under a constant stress value after simulation
step 16; see Fig. 4. However, as shown also in Fig. 4, the
true stress level continues to increase up to fracture. The
cross-sectional area is changing significantly during the
simulation.

6.2. Strain behavior

The evolution of the strain and the free volume along
the simulation can also be compared; see Fig. 5.

The strain begins to increase only after several simu-
lation steps—when the force is sufficient for deformation
mechanisms to take place. However, during the first
deformation stage, the slope of the strain curve is low.
This corresponds to the mechanisms requiring lower
force values. Since the force increases continuously,
the slope of the strain curve changes at around 13
simulation steps; from that point on, the strain rapidly
increases up to fracture.



Fig. 7. Geometry of the material near the moment of fracture.

Fig. 5. Evolution of the strain (e) and the free volume (Vf) during
simulation. Here, t is the number of simulation steps.
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The free volume curve provides additional informa-
tion. After the initial random perturbation from the
ideal lattice positions, the material has approximately
33% free volume. The drop in free volume to approxi-
mately 20% after the first simulation step corresponds
to the equilibration of the material. These values are
not far from 26% for the ideal lattice, which indicates
an acceptable representation of the material geometry
by the defined sections. The free volume remains
approximately constant for 10 simulation steps, even
though the material is being strained. Apparently the
deformation is occurring at nearly constant volume, with
a decrease in the cross-section accompanying elongation
along the force application direction.

After this point, the free volume starts increasing and
continues to do so up to fracture. This implies the for-
mation and propagation of cracks inside the material.
The free volume in Fig. 5 is calculated as the average
value for the ten sections. However, the free volume
does not change uniformly throughout the material.
To verify this, the free volume for each section along
time is represented in Fig. 6. Recall that relatively small
amounts of free volume enhance the chain relaxation
capability (CRC) [2,60]. Apparently large Vf values cal-
Fig. 6. Changes in the free volume (Vf) of individual sections during
simulation. The lines connecting the values were represented only for
better visualization. Here, t is the number of simulation steps.
culated according to this procedure are indicative of
cracks.

Clearly, in the late stages of the simulation the free
volume increases significantly for sections 9 and 10,
while some sections still exhibit values nearly unchanged
since the beginning of the simulation. The material actu-
ally fractures around sections 9 and 10, as shown in
Fig. 7 as anticipated by high values of the free volume.
It is also important to note that near fracture the
cross-sectional area should tend to zero, causing the true
stress to tend to infinity. However, since the true stress is
calculated from the geometry of the sections, the effect is
somewhat masked.

6.3. Viscoelastic recovery

It is also interesting to observe the material response
when the force is applied for a certain period and then
removed. This will validate the viscoelastic nature of
the model and simultaneously allow the study of the
material behavior during recovery.

Considering again the material studied in Sections 6.1
and 6.2, an external force increasing at the constant rate
of 0.01 was applied for 20 simulation steps and then re-
moved. The recovery of the material after force removal
was monitored for 30 additional simulation steps. The
strain behavior and the changes in free volume during
the simulation are shown in Fig. 8.

As expected, the strain increases up to the point of
force removal. The material then recovers, and two
stages of this process can be distinguished. The strain
decreases rapidly for about 7 simulation steps and then
slowly for another 22 simulation steps. The strain
Fig. 8. Deformation and subsequent viscoelastic recovery after force
removal are evident in the behavior of the strain (e) and free volume
(Vf) curves. Here, t is the number of simulation steps.



Fig. 10. (a) Initial geometry of the material viewed from the top; (b)
geometry of the material at time t = 50 simulation steps viewed from
the top. A considerable expansion along the z-axis is observed during
the recovery stage.
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decreases approximately 35% of the maximum value in
each of those two stages. After this point, the recovery
is very small and thus one can consider that the material
has reached a meta-stable state.

The free volume curve in Fig. 8 provides additional
information regarding deformation. After an initial
stage during which the free volume remains almost
unchanged, it then increases together with the rapid
increase of the strain up to force removal. Similarly to
the strain, Vf then decreases for several simulation steps,
but eventually stabilizes and does not decrease continu-
ously as the strain does. This is due to the material
buckling instead of recovering to the initial shape. It is
important to note how the peaks of the strain and free
volume occur at the same time; the same does not occur
for strain and stress, as will be presented in a separate
paper.

The structure of the material is represented at differ-
ent stages of the simulation in Fig. 9.
Fig. 9. (a) Geometry of the material at time t = 1 simulation step, the
beginning of the tensile simulation. Until this moment, no external
force has been applied. (b) Geometry of the material at time t = 21
simulation steps, immediately before force removal. This corresponds
to the maximum strain observed. (c) Geometry of the material at time
t = 28 simulation steps. Some recovery has been observed in a few
steps without external forces applied. (d) Geometry of the material at
time t = 50 simulation steps. Over an extended period without external
forces applied, a significant amount of deformation was recovered.
The recovery of the material is not uniform; the final
shape is very different from the initial one; see again
Fig. 9d. This is due to the force only having been
removed after significant deformation occurred; in
fact, the force has been removed at a point quite close
to fracture. For very small deformations, the material
can recover to a shape closely resembling the initial
state.

Another important observation is associated to the
free motion of the material along any axis and its ten-
dency to buckle and expand along the z-axis during
recovery. In some cases, the length along the x-axis even
becomes smaller than the initial value, which would
indicate unreasonable negative contraction. However,
by analyzing the free volume curves and graphically
visualizing the simulation results, one can confirm that
the material is simply expanding along the z-axis.
Fig. 10 shows the initial and final structure of the mate-
rial seen from the top.
7. Concluding remarks

By calculating the true stress on the material, one can
observe how the changes in cross-sectional area result in
stress levels much higher than those indicated by the
engineering stress. This procedure provides a much
more realistic measure of the true mechanical state
imposed on the material. The true stress behavior was
found to be not only quantitatively but also qualitatively

different from that of the engineering stress. Moreover,
since the material often exhibits highly localized defor-
mation, the true stress in a certain region can increase
substantially compared to the overall values. In that
case, those regions become probable loci for failure to
occur. This effect is also reflected in the free volume
values for those regions. On one hand, the free volume
affects the mobility of the segments via CRC. On the
other hand, large local amounts of free volume provide
an opportunity for crack formation and propagation.

By simultaneously analyzing the strain and free vol-
ume curves, detailed information about the deformation



R. Simões et al. / Computational Materials Science 36 (2006) 319–328 327
mechanisms is obtained. First, short-scale deformation
was found to be achieved at near-constant free volume;
as the material elongates in the direction of force appli-
cation, the average cross-section is decreasing. When
significant increases in Vf occur under larger deforma-
tions, they reflect the fact that cracks begin to appear
and grow. These results corroborate what had been
stated before about deformation mechanisms taking
place at the mesoscale in polymeric materials [59]. This
previous publication includes several animations of the
tensile deformation of these materials.

When a force is applied and then removed after large-
scale deformation has occurred, the CGMs exhibit
viscoelastic recovery. A significant part of the imposed
deformation is recovered, but after some time the recov-
ery reaches a plateau. The recovery process is non-
homogeneous and depends on the chain structure of
the material. Deformation mechanisms such as chain
slippage and bond rupture are not recovered and
contribute to permanent deformation. The CGMs have
a tendency to buckle during recovery; this phenomenon
will be further investigated in future work.

A better understanding of the molecular phenomena
that take place during deformation of polymers emerges
from these simulations. The possibility of predicting the
mechanical properties from simulation results is encour-
aging. However, further work is warranted, particularly
so on connections between the nano- and mesoscopic
levels and macroscopic properties and behavior.
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