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1. Introduction

The nature of liquid-crystallinity in polymer liquid crys-

tals (PLCs) has been studied using two distinct

approaches: lattice and nonlattice. The first method was

preferred by Flory who formulated the theory of the

athermal PLC systems in his now classic 1956 papers.[3, 4]

Flory’s model deals with semiflexible longitudinal PLC

chain macromolecules. That is, each chain consists of

relatively rigid LC and flexible (F) polymer sequences,

with both kinds of sequences occurring in the main chain

and the LC sequences oriented along the chain back-

bone.[5–7] Longitudinal PLCs are much different from

comb or side chain PLCs – such as investigated experi-

mentally for instance by Springer, Zugenmaier and co-

workers.[8–11] They are also different from double PLCs,

with LC sequences both in main and side chains, studied

in particular by the University of Halle group[12–16] and

also by the Springer group.[17, 18]

In the Flory model the macromolecule is represented

by a set of lattice cells. He proposed an ingenious proce-

dure to calculate the system probability.[3, 4] The model

requires a small deviation (no larger than 308) of LC

“hard rods” from a direction of the so-called system sym-

metry axis; it is the axis of the system cylindrical symme-

try. The original theory was subsequently amplified by

Flory, his collaborators and students.[19–33] However, an

extension of the model to larger angles including 908
seems to be rather artificial.

A nonlattice approach was proposed by de Gennes.[34]

A PLC system is represented by three semiflexible chains
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with mutually perpendicular end-to-end distances. One of

them is assumed to be the system symmetry axis; thus

two chains perpendicular to this axis are physically

equivalent. A chain is not necessarily fully freely-jointed

or flexible. The system probability is obtained using con-

ditional optimization of the Helmholtz function func-

tional; one uses the boundary conditions imposed on the

chains end-to-end distances. The de Gennes theory was

then considered further by Jarry and Monnerie[35] and also

by one of us.[36–39]

Both Flory and de Gennes theories are microscopic and

use a molecular mean field approach to describe the inter-

nal anisotropic orienting interactions. The phases are dis-

tinguished with respect to a local orientation, and are

character ized by the parameter s which is the average of

the second Legendre polynomial P2 calculated from

orientations of LC hard rod particles. s = 0 is for isotropic

while s A 0 for nematic phases. Flory and de Gennes the-

ories as well as later theories involving uniaxial orienting

interactions[40–43] predict only the transitions from s = 0 to

s A 0. Moreover, they do not include in their considera-

tions the presence of an external field, such as electric or

magnetic. However, a connection between the external

fields and nematic order has been considered using the

Landau phenomenological formulation of the Helmholtz

function as a series in terms of the orientational para-

meter; see for example Gramsbergen and coworkers.[44]

A nonlattice microscopic theory of PLCs which

involves a molecular mean field as well as an external

one has been formulated in ref.[1] Presented there is a gen-

eral thermodynamical description of the system. Specific

phase diagrams were obtained for:

i) the mean field theory with s2 interaction in the Maier

and Saupe limit,[45–47] and

ii) the Gaussian limit of the distribution of conforma-

tions of F (flexible) sequences within a longitudinal PLC

chain.

In ref.[2] the theory of ref.[1] was amplified. Especially,

we focused on values of s pertinent to the phase transition

lines in PLC phase diagrams.[1, 2] Predictions from the

model[2] show that s can be positive as well as negative,

in addition to allowing for s = 0. As discussed in ref.,[47]

s A 0 means that the system is in the nematic state and

has a global nematic symmetry axis, labeled d. In this

case the probability of orientations of LC hard rod moi-

eties along d has a maximal value. For s = 0 the system is

isotropic. For s a 0 the probability of the LC direction

which is perpendicular to d is the highest. In other words,

s A 0 represents a system with enhanced direction of the

LC units parallel to d while s a 0 with enhanced direction

perpendicular to d. A formal possibility of the last situa-

tion in nematic systems was noticed by de Gennes.[47]

However, he did not see physical reasons for s a 0 in

monomeric liquid crystals (MLCs) which he investigated.

Since then some results for MLCs, showing that s A 0 as

well as s a 0 are both possible, have been reported.[48–51]

The effect was seen experimentally and theoretically, and

stems from a relative flatness of the LC system particles.

However, there can be other reasons which can cause this

situation:

(1) incorporation of LC particles into a polymer frame in

PLCs;

(2) the presence of an external electric field.

For the comb (side chain) PLCs the case (1) was con-

firmed experimentally in ref.[52–54] and for systems of

longitudinal main chain macromolecules in ref.[55–58] The

effect was also derived theoretically in ref.[1] and ref.[2]

Experimental evidence of the effect (2) in MLCs as well

as PLCs exists.[52–54] The main objective of the present

article is to investigate the effect (2) for the system of

longitudinal PLC chains. Since orientations are created

fairly easily in LC systems, the effects we are to trying

seize are expect to be significant.

2. General Considerations

This work is a continuation of the theory in[1] and[2], but

taking now into account the presence of external electric

fields. The probability density function q has been calcu-

lated in ref.[1] as follows:

q = CqLC qF d (1)

where qLC and qF are, respectively, probabilities of the

topologically separated (unconnected) LC and F (flexible

polymer) system parts. qLC is given by the Gibbs expo-

nential formula[59] whereas qF is obtained using stochastic

(random walk) calculations.[1] Constraints pertinent to the

topological structure (type of connections) of LC and F

sequences in PLC are imposed on q by the function d

which is a product of Dirac delta functions.[1] The con-

stant C normalizes q to unity.

The Helmholtz function A is calculated using the stan-

dard equation:[59]

A = U – TS (2)

Here U is the system internal energy while S =

–kTplnqP is the entropy, and is equal to an average calcu-

lated with the distribution q; T is the thermodynamic tem-

perature and k is the Boltzmann constant.

The PLC system considered contains Nch longitudinal

chains. The number of consecutively copolymerized LC

and F sequences per chain is n. The total number of LC

sequences in the system is Nh . Thus Nh = pnPNch , where

pnP is the average n value per chain. The general formula

for A for such a system given in ref.[1] (see also Equation

(A-1) in the Appendix) has been then applied in[1] and[2]

to the Maier-Saupe s2 limit.[44–46] In this approach the LC

+ LC orienting interactions are replaced by LC + molecu-

lar mean field interactions. Our model assumes that each
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permanent electric dipole corresponds one-to-one to a

LC-vector sequence and is directed along the LC long

axis. When, in addition to that molecular field, an exter-

nal electric field directed along the molecular field

appears, the dipole-superposed field interaction energy U

takes the form:

U = –Nh (UhpP2P
2/2 + Uex pP1P) (3)

this involves the orientational averages pP2P and pP1P of

the second and the first Legendre polynomials defined as:

P2 = (3cos2x – 1)/2 and P1 = cosx (4)

where x is the local deviation angle of the LC-vector

direction from a common direction of the molecular and

external fields. This direction coincides with the z labora-

tory axis. The averages pP2P = s and pP1P = s1 are calcu-

lated over the whole system.

In Equation (3) we also have two positive parameters,

Uh and Uex , which respectively pertain to the intensity of

interactions between the LC dipoles and the molecular

and external fields. In the original articles of Maier and

Saupe[44, 45] the potential constant Uh is due to attractive

van der Waals forces and is temperature independent. The

temperature dependent internal orienting interactions

between permanent dipoles are neglected, assumed much

weaker than dispersive ones. Experiments made

since[60–62] indicate that a contribution from steric repul-

sion forces may be non-negligible; moreover, Uh does

depend on T. Flory and Ronca discussed this problem for

PLCs.[20] On this basis, we have used in ref.[31] the follow-

ing form:

Uh = pghP hT* (5)

where pghP is the average length of LC hard rod

sequences in the system. That length is proportional to

the LC anisotropy. h is the concentration of LC sequences

in the PLC while T* is a characteristic temperature which

serves as a measure of LC + LC interaction intensity. The

measure is normalized to the Uh value taken for unit

values of pghP and h. UexP1 is the scalar product of the LC

permanent dipole moment and the unit vector of an exter-

nal field. In the following we shall use the reduced para-

meters uh = Uh /kT and uex = Uex /kT.

As discussed in the Appendix, the system uniparticle

Helmholtz function ~A is:

~A=kT ¼ uhsðsþ 1Þ=2ÿ ln f0 þ ð1=2 pnPÞðK2

x þK
2

y þK
2

zÞ
þ ð3j=2pnPÞ½ðKxÿ1Þ2ð1ÿ f2Þ=2þðKyÿ1Þ2ð1ÿ f2Þ=2

þðKzÿ1Þ2ð1ÿ f2Þ�
þð3j1=2pnPÞðKzÿ1Þ2 f2

1 þ const: ð6Þ

Parameters, Kz , Ky and Kx characterize the deviations

from the spherical system symmetry.[1] In our case the

deviations are induced by the presence of both molecular

and external fields. Using definitions given by Equation

(A3), we obtain for our system:

K
2

z ¼ ½3ðjf2 þ j1f2

1Þ þ 1�=ðjþ 1Þ ð7Þ

K
2

x ¼ K
2

y ¼ ½3ðjð1ÿ f2Þ=2þ 1�ðjþ 1Þ ð8Þ

where j and j1 are:

j ¼ ppg
2

hP1int=pgcP1intP1 ð9Þ

j1 ¼ pðnÿ 1Þpg2

hP1int=pgcP1intP1 ð10Þ

As discussed in connection with Equation (5), gh is the

LC sequence length. The end-to-end distance for a F-type

sequence is gc . Averages in (9) and (10) are calculated in

two steps: the average with the subscript l int is calculated

within a chain, and the average with the subscript l is

obtained for the whole system of chains. Parameters j

and j1 provide a structural description. This can be shown

in a straightforward way for the monodisperse case; then

pg2
hP = pghP

2 = g2
h and pgcP = gc . Consequently, j1 = pn –

1Pj and j = gh h/(1 – h), where h = gh /(gh + gc) is the LC

concentration parameter defined in the Flory PLC theory.

The uniparticle partition function f0 and moments f1 and

f2 are given by:

f0 ¼
Z 1

ÿ1

expðuexzþ 3 uhsz2=2Þdz ð11Þ

and

fp ¼
Z 1

ÿ1

zp expðuexzþ 3 uhsz2=2Þdz=f0 ð12Þ

where p = 1 or 2.

Equilibria of phases with respect to the orientational

order can be recognized by using the equations:

~AðsIÞ ¼ ~AðsIIÞ ¼ ~AðsIIIÞ ¼ ::: ð13Þ

which stem from the chemical potential equivalence in

all phases. Phases, indexed by I, II, III, etc., are distin-

guished with respect to various values of s. Moreover, the

Helmholtz function in each phase must exhibit a global

minimum at which the derivative d~A/ds is equal to zero.

The average s1 is calculated with the system probability

density such as in Equation (A10) in Appendix, with

u(ĝh) of the form in (A4), where s is for the system in

equilibrium.

3. System Ordering

The present paper is focused on the question: how does

the external field modify the PLC properties? Analogous
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properties for the field absence were studied in ref.;[2] that

situation corresponds to Uex = 0 in Equation (3). Figure 1,

based on the results in ref.,[2] shows the system phase dia-

gram in terms of the parameters j/pnP and uÿ1
h . The lines

separate several regions for phases with various s values

and the respective phase equilibria are distinguished with

respect to s. The phase diagram in Figure 1 is covered by

a grid with small square dots. The coordinates of each dot

are provided in Table 1. In general, the dot labels a point

with s m 0 in an anisotropic phase with the concentration

s, this in addition to s = 0 for the isotropic phase. The

parameter s is equal to Nh aniso /(Nh iso + Nh aniso). Here Nh aniso

is the number of LC sequences in the phase with s m 0

and Nh iso is the analogical number for the phase with

s = 0. We clearly have Nh aniso + Nh iso = Nh . Thus, a map of

values of s m 0 and s is contained in Table 1. For s = 0

there is no anisotropic phase. For s = 1 there is no isotrop-

ic phase and s A 0 and/or s a 0. The sign of s depends on

values of the cell coordinates j/pnP and uÿ1
h . For 0 a s a 1

the system is in an isotropic-anisotropic equilibrium.

For more convenient discussion in terms of physical

and structural parameters of the PLC, we introduce

uÿ1
h = kT/T*hpghP after Equation (5), while j = pghPh/

(1 – h) as noted before. Thus, uÿ1
h involves the thermal

parameters T and T* and also the structural parameters h

and pghP. An inspection of Figure 1 and Table 1 in these

terms leads to the conclusion that the left upper area of

the phase diagram corresponds to the system at high

reduced temperatures T/T*; that is high in comparison to

the other temperatures in the phase diagram. The LC con-

centration h and the LC sequence length pghP are rela-

tively low in this area. The right upper area is the part of

the phase diagram representing the systems at high tem-

peratures and with high concentration h of LC sequences.

These sequences are long, that is pghP values are large.

Similarly, the left bottom area corresponds to low T/T*

values, low h and short pghP. The right bottom part repre-

sents low T/T*, high h and large pghP values. The para-

meter T* is obtained from experimental pressure-volume-

temperature (P-V-T) results via an equation of state,[63–67]

and depends on details of molecular structure and pack-

ing at the molecular level.

Figure 1 and Table 1 have been obtained for a large

range of values of the parameters j/pnP and uÿ1
h . This has

been done on purpose, to explore possible kinds of behav-

ior. Not every real system will exhibit all these types of

behavior. Thus, systems with s = 0 and s A 0 as well as

s a 0 can be found if T, related via j/pnP, uÿ1
h and T* to s,

has a physically reasonable value for a given real system.

In Table 1 we have more cells than points marked in

Figure 1. Additionally included are j/pnP equal to 0.01

and 0.1. Such small values of j/pnP correspond to PLC

Table 1. Values of the orientation parameter s and the concentration of the anisotropic phase s corresponding to dotted points in
Figure 1, plus s and s for j/pnP equal to 0.01 and 0.1. For s = 0, only the isotropic phase with s = 0 exists; s m 0 is marked by a dash.
For s = 1 the system has one stable, anisotropic phase with s m 0. Isotropic – anisotropic equilibrium exists for s between 0 and 1.
Positive values of s in the relevant cells pertain to the anisotropic phase.

uÿ1
h = 0.25 0.225 0.2 0.175 0.15 0.125 0.1 0.075 0.05

j/pnP = 0 s = – – 0.61 0.72 0.79 0.84 0.88 0.92 0.95
s = 0 0 1 1 1 1 1 1 1

j/pnP = 0.01 s = – – 0.61 0.72 0.79 0.84 0.88 0.92 0.95
s = 0 0 1 1 1 1 1 1 1

j/pnP = 0.1 s = – – 0.60 0.72 0.79 0.84 0.88 0.92 0.95
s = 0 0 1 1 1 1 1 1 1

j/pnP = 1 s = – – 0.41 0.50 0.69 0.80 0.86 0.91 0.94
s = 0 0 0.52 0.81 1 1 1 1 1

j/pnP = 2 s = – – 0.40 0.46 0.64 0.74 0.83 0.89 0.94
s = 0 0 0.34 0.53 0.71 0.93 1 1 1

j/pnP = 3 s = – – 0.39 0.44 0.63 –0.21 –0.31 0.88 0.93
s = 0 0 0.27 0.42 0.55 0.74 0.99 1 1

j/pnP = 4 s = – – 0.39 0.41 –0.08 –0.21 –0.31 0.87 0.93
s = 0 0 0.23 0.36 0.47 0.64 0.87 1 1

j/pnP = 5 s = – – 0.38 0.39 –0.08 –0.21 –0.31 –0.39 0.93
s = 0 0 0.21 0.32 0.42 0.57 0.78 1 1

j/pnP = 6 s = – – 0.38 0.35 –0.08 –0.21 –0.31 –0.38 0.92
s = 0 0 0.19 0.29 0.38 0.52 0.71 0.99 1

j/pnP = 7 s = – – 0.38 0.30 –0.08 –0.21 –0.31 –0.38 0.92
s = 0 0 0.17 0.26 0.35 0.48 0.66 0.92 1

j/pnP = 8 s = – – 0.38 0.26 –0.08 –0.21 –0.31 –0.38 –0.44
s = 0 0 0.16 0.25 0.33 0.45 0.62 0.87 1

j/pnP = 9 s = – – 0.38 0.24 –0.08 –0.21 –0.31 –0.38 –0.44
s = 0 0 0.15 0.23 0.31 0.42 0.58 0.82 1

j/pnP = 10 s = – – 0.37 0.23 –0.08 –0.21 –0.31 –0.38 –0.44
s = 0 0 0.14 0.22 0.29 0.4 0.55 0.78 1
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systems with low LC concentration. In the presence of an

external orienting field such a system can exhibit very

interesting modifications of phase ordering.

As already noted, the phase diagram in Figure 1 corre-

sponds to uex = 0. It serves us now as a benchmark for the

evaluation of effects of switching on an external field,

and the consequent modification of internal ordering. The

following discussion is based on an analysis of minima of

the uniparticle Helmholtz function ~A in Equation (6) with

respect to s and s, as in Equation (13), taking into account

the results in ref.[1, 2]

To begin with, for uex A 0 the parameter s = 1. This is

independent of j/pnP and uÿ1
h . In other words, only the

anisotropic phase with s m 0 is stable. The isotropic phase

with s = 0 is totally unstable. Under conditions discussed

next, the anisotropic phase can split into two phases with

s A 0 and s a 0.

The answer to the question how an increase of uex is

related to s is provided in Figure (2)–(4). Plots labeled (a)

are for pnP = 10 and those labeled (b) for pnP = 100.

Values of uex per chain are marked on the abscissae and

change from 0.01 to 10. To acquire a feeling for the mag-

nitudes involved, the maximum considered value uex = 10

corresponds to the electric field of approximately 105 V/

cm interacting with a 1 Debye dipole at the temperature

of 300 K.

The curves presented are distinguished with respect to

j/pnP which is equal to 0, 0.01, 0.1, 1 and 10. Curves for

j/pnP between 1 and 10 are omitted because in these cases

changes in the plots are insignificant. The curve for j/

pnP = 0 is related via Equation (6), (7) and (8) to the MLC

system of unconnected LC mesogen particles.[1, 2] How-

ever, in this case the physical significance of the para-

meter pnP is not exactly the same as in the PLC systems,

this due to the connectedness to flexible (F type, naturally

unoriented) polymer chain sequences.

For PLCs the system basic element is one chain; uex

values in Figure (2)–(7) are those per single chain. The

number of LC sequences per chain pnP is a structural

parameter. It is related to the number of the chain internal

degrees of freedom[1, 2] – and this is why for PLCs we

consider separately cases (a) and (b).

Figure 1. The PLC phase diagram in terms of parameters uÿ1
h

and j/pnP (after ref.[2]). uÿ1
h is proportional to the reduced tem-

perature T/T* and inversely proportional to pghP and h. For the
monodisperse system for which pg2

hP = pghP
2, the parameter is

equal to pghPh/(1 – h). As shown, there are five zones of phase
equilibria; there exists the isotropic phase for which s = 0. The
isotropic-anisotropic equilibria exist in zones for which s = 0
and s A 0, or s = 0 and s a 0. Anisotropic phases are in two zones
with s a 0, and with s A 0. Ternary points with s a 0 , s = 0, and
s A 0 phases in equilibrium are represented by the t line. Binary
points with s a 0 and s A 0 equilibria exist on the b line. Values
of the orientation parameter s and concentration s parameters for
the anisotropic phase which pertain to dotted points are listed in
Table 1.

Figure 2. The orientation parameter s vs. the intensity of inter-
actions uex per chain, for uÿ1

h = 0.25. Parameters uÿ1
h and j/pnP

are the same as in Figure (1). For uex the values of s and s are
those listed in Table 1. Modification of s by the external field is
illustrated by the plots. The plots are for j/pnP equal to 0 (for an
MLC), 0.01, 0.1, 1 and 10. The plots for j/pnP between 1 and 10
(see again Table 1) have the same character as those for j/pnP
equal to 1 and 10, and lay between them. The case (a) is for
pnP = 10, case (b) corresponds to pnP = 100. In both cases we
find that for uex A 0 the isotropic phase is an completely
unstable, so that s = 1. A continuous s change near uex = 0, from
s = 0 to s A 0 or s a 0 for various j/pnP, corresponds for a phase
transition which is a Curie point.
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For MLCs the system basic element is the LC particle.

The uniparticle Helmholtz function ~A is given by the two

first terms of Equation (6), and does not depend on pnP.

In this case the number pnP is a formal parameter only

which appears in plots pertaining to PLCs and is placed

in the same Figure. For an MLC the number pnP can be

used for rescaling abscissae in Figure (2)–(7) as follows;

uex per LC = uex /pnP. In this case, the plot labeled (b) consti-

tutes the beginning part of the plot labeled (a).

In general, a change of s depends on the variable uex ,

and on j/pnP as a parameter. In addition and as already

noted, we consider cases with two various pnP values, as

in (a) and (b). The change of s can be either rapid or con-

tinuos. According to the Landau classification[68, 69] this

means that we have phase transitions of the first or a non-

first order; the last ones are also called Curie points. An

analysis of Figure (2)–(4) shows for MLCs and low LC

concentration PLCs with j/pnP = 0.01 that an increase of

uex causes an increase of s. For uÿ1
h = 0.25 and pnP = 10 as

in Figure (2a), this increase is continuous from s equal to

0 to about 0.5. However, for pnP = 100 as in Figure (2b),

the plot of s vs. uex for a low LC concentration PLC is a

slowly decreasing function from zero to a negative value.

This means that for a PLC the degree of polymerization

pnP can change the basic character of the function s vs.

uex. For PLCs with higher LC concentrations and with j/

pnP equal to 0.1, 1 and 10, both cases (a) and (b) provide

s as a decreasing function of uex. All plots in Figure (2)

change continuously from s = 0 to s m 0. Thus, the

respective phase transitions which occur are not of the

first order.

In the case illustrated in Figure (2), the absence of an

external field produces the isotropic phase only. The ani-

sotropic phases with s A 0 or s a 0 appear when the field

is switched on. In Figure (3) and (4) we show how the

presence of an external field modifies s in systems in

which anisotropic phases already existed before switch-

ing on the external field. Figure (3) and (4) are, respec-

tively, for uÿ1
h equal to 0.2 and 0.1.

Inspection of Figure (3a) shows that s can vary in three

distinct ways. For j/pnP equal to 0 and 0.01, s is an increas-

ing and a smooth function of uex . No phase transition from

the isotropic to an anisotropic phase is observed. For j/

pnP = 0.1 we observe the first order transition from s A 0 to

s a 0 at a positive uex, where s changes rapidly. For j/pnP

equal to 1 and 10, only the Curie point type transition from

s = 0 to s a 0 is observed at uex = 0. The character of the

plots in Figure (3b) is generally similar.

In Figure (4a) we observe the appearances of two tran-

sitions of the first order. They correspond to two different

Figure 3. The orientation parameter s vs. the intensity of inter-
actions uex per chain, for uÿ1

h = 0.2. Parameters and labels are as
in Figure (2) and (3). The first order transition from s A 0 to
s a 0 in (a) and (b) cases correspond to j/pnP = 0.1. Non-first
order transitions occurs near uex = 0, for j/pnP values equal to 1
and 10.

Figure 4. The orientation parameter s vs. the intensity of inter-
actions uex per chain, for uÿ1

h = 0.1. In (a) one sees two first order
transitions from s A 0 to s a 0, for j/pnP equal to 0.1 and 1. A
Curie point transition from s = 0 to s a 0 occurs j/pnP = 10. In
(b) where j/pnP = 0.1 the transition vanishes.
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values of uex , with j/pnP equal to 0.1 and 1. In Figure (4b)

this phase transition vanishes for j/pnP = 0.1, while that

for j/pnP = 1 remains. Changes of s with uex are represen-

tative for values of uÿ1
h in between 0.22 and 0.05. How-

ever, some quantitative differences are predicted. Phase

transitions induced by electric field vanish with further

decrease of uÿ1
h . This seems reasonable because of the a

very low temperature system in this case.

4. Dipolar Orientations

Averages of odd Legendre polynomials are unvanishable

for systems with nematicity disturbed by the presence of

external electric field. For characterization of orienta-

tional properties in this case at least the first two non-zero

averages are required, that is s 3 s2 and s1; the former has

already been discussed in Section 3. Projection of the

LC-dipole D on the direction of the external field is

called DE and is equal to Dcosx. The average DE is

pDEP = DpcosPx = Ds1 . It was long ago recognized

experimentally that the presence of an elastic part in a

PLC system leads to a decrease of pDEP in comparison to

that in MLC.[70] For theoretical explanation of this fact de

Gennes proposed the hair pin model of PLC chain[71]

developed further in ref.[72, 73] In this model the wormlike

chain with permanent electric dipoles connected head-to-

tail along the chain contour is subjected to bends, strictly

Figure 5. The orientation parameter s1 vs. the intensity of inter-
actions uex per chain, for uÿ1

h = 0.25; the j/pnP values and phase
transition points are as in Figure (2).

Figure 6. The orientation parameter s1 vs. the intensity of inter-
actions uex per chain, for uÿ1

h = 0.2; the j/pnP values and phase
transition points as in Figure (3).

Figure 7. The orientation parameter s1 vs. the intensity of inter-
actions uex per chain, for uÿ1

h = 0.1; the j/pnP values and phase
transition points are as in Figure (4).
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speaking to 1808 about-faces. Thus, only the possibility

of parallel and/or antiparallel dipole orientations is

allowed. Because of annihilation of some parallel-antipar-

allel pairs, the resultant pDEP in a PLC is lower than that

in a MLC. How much lower it is depends on the number

of the about-faces.

We obtain the same effect using the more realistic PLC

chain model defined in Section 2. The dipole orientation

is a result of competition of energetic and entropic

mechanisms within the system. There are no preferred

dipole orientations, in contrast to those enforced by the

hair pin for the parallel-antiparallel dipoles. The results

we obtain are illustrated in Figure (5)–(7), as dependen-

cies of s1 on uex ; note that pDEP is proportional to s1 , and

we are using the same set of parameters as in Figure (2)–

(4). In general, s1 is an increasing function of uex . This

tendency is independent of the parameters uÿ1
h and j/pnP.

However, for some values of uex a rapid decrease in s1 is

observed. This is illustrated in Figure (6) and (7). We see

here a reflection of the system reorganization from a

more oriented phase with s A 0 to a lower orientation with

s a 0. The change occurs at the first order transition point

discussed in Section 3. A further increase of uex enhances

the orientation and so produces an increase of s1 but

within the less oriented phase.

In Figure (5)–(7) the highest values of s1 seen in the

curves for j/pnP = 0 it that for the MLC. For PLCs for

which j/pnP A 0, the s1 values are lower than the analogous

ones for the MLC. This difference depends on both para-

meters used, uÿ1
h and j/pnP, and on the variable uex . In gen-

eral, the difference between s1 for a MLC and a PLC is

small for low values of uex . This is especially so for uÿ1
h

equal to 0.25; the case is illustrated in Figure (5a) and

(5b). As discussed in Section 3, the anisotropic phase in

this case is produced only by the presence of an external

electric field. The nematic-like LC + LC interactions are

incapable of creation of anisotropic phases because of a

high temperature of the system. An increase of j/pnP

means that the system becomes more dense in LC units.

Thus LC orientations are caused primarily by the liquid

crystalline mechanism rather than by the external electric

field. The LC mechanism takes into account energetic and

entropic factors discussed in ref.[1, 2] As a consequence, the

s1 curve is going down with an increase of j/pnP.

For uÿ1
h equal to 0.2 and 0.1 the PLC system can pro-

duce an anisotropic phase not necessarily in the presence

of an external field. See again discussion in Section 3, the

effect is a consequence of a low temperature of the sys-

tem. These situations are illustrated in Figure (6) and (7)

in terms of s1 vs. uex dependence. In Figure (6a) the

curves for j/pnP equal to 0 (MLC) and 0.01 (poor PLC)

are practically the same. For j/pnP = 0.1 the difference

between s1 for the MLC and the PLC grows with increas-

ing uex , with the curve slope decreasing rapidly to a non-

zero value. We have a reflection of the system ordering

reorganization such as seen in Figure (3a). A further

increase of s1 shows enhanced system organization

induced by the external field in the phase with s a 0.

Curves for j/pnP equal to 1 and 10 are very close to each

other and are smoothly increasing functions of uex . The

increase is much slower than that for MLCs. Similar

situations are seen in Figure (6b) and (7). However, in

Figure (7) the s1 curves for j/pnP equal to 0. 0.01, 0.1 and

1 are practically the same but only up to the system reor-

ganization manifested by a rapid decrease of the slope.

Stronger differences between the curves appear upon

further increase of uex .

Figure (5)–(7) represent uÿ1
h in the range defined in

Table 1; in (5) we have uÿ1
h A 0.23, and in (6) and (7)

uÿ1
h a 0.23. A further decrease in uÿ1

h leads to the domina-

tion of nematic-like forces; consequently, s1 vanishes.

5. Concluding Remarks

Polymer liquid crystals present a variety of behaviors.[75]

The theory presented here predicts s A 0 as well as s a 0,

in addition to s = 0. The change of s value is induced by

molecular mechanisms: polymerization of LC sequences

in a PLC system and/or by an action of an external elec-

tric or magnetic field.

The change of the orientation parameter s from a posi-

tive to a negative value means that the system undergoes a

disorientation of the LC sequences with respect to the

nematic axis direction n. This effect depends on the physi-

cal and structural parameters, such as the system reduced

temperature T/T*, the LC concentration h, the length of

LC sequence pghP. Switching on an external electric field

can also cause the s A 0 to s a 0 transition. The external

field determines the system ordering in each phase. This is

reflected in the growth of s1 with increasing uex .

Appendix

The general form of the Helmholtz function as given in

ref.[1] is:

A ¼ ÿ kT ln

Z
:::

Z
exp½ÿuðĝhÞ=kT�pðĝh;

~Kÿ1r̂Þ

dĝhdð~Kÿ1
r̂ÞÿpuðĝhÞPÿkTp ln pðĝ; r̂ÞPþU ðA1Þ

where U is the system total energy. In our case of orient-

ing interactions we assume that the energy of long-range

interactions between a flexible spacer and another ele-

ment of the system is negligible in comparison with inter-

actions between mesogen LC cores; U is given by Equa-

tion (3) in the main text. ĝh labels the set of LC

sequence-vectors gh and r̂ labels the set of all chain end-

to-end vectors r. The symbol ~Kÿ1 denotes the inverse of

the system self-deformation gradient ~K. This deformation

is affine, and is imposed on all vectors of the set r̂. The

gradient ~K has the form of the following diagonal matrix:
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~K ¼
Kx 0 0

0 Ky 0

0 0 Kz

24 35 ðA2Þ

with the components defined by:

K
2

i ¼ pr2
i P=pr

2
i P0; i ¼ x; y; z ðA3Þ

where x, y and z are components of r in the laboratory

system of Gaussian coordinates. The average with sub-

script 0 in (A3) pertains to the system which has a spheri-

cal symmetry. The average without the index 0 is calcu-

lated for the system without the spherical symmetry.[1]

Thus, ~K is a measure of deviations from the system sym-

metry, caused by any physical reasons. In our model these

deviations stem from the presence of the combined mole-

cular + external field, whereas in the absence of this field

the symmetry is assumed to be spherical.

In general, u(ĝh) denotes the internal energy of the LC

part of the system. In our case

uðĝhÞ=kT ¼ ÿuex

XNh

j¼1

P1j ÿ uhs
XNh

j¼1

P2j ðA4Þ

Here the second term containing uh corresponds to the

dipole-molecular field interactions.[44–46] The first term

with uex stems from the dipole-external field interaction. j

is the running index over all LC sequences in the system.

The orientation parameter s is defined as the average over

the whole system, namely

s ¼ Nÿ1
h

XNh

j¼1

pP2jP ðA5Þ

The probability p(ĝh; r̂) of the state of the set of flexible

sequences F in PLC, with ĝh and r̂ fixed, is:

pðĝh; r̂Þ ¼
YNch

m¼1

Prc

Xn

j¼1

gh ÿ r

 !( )
m

ðA6Þ

where m is the running index over all chains. The func-

tion Prc
(x) in (A6), is the integral probability of reaching

the vector-distance r in rc random walk steps.[1] It must be

pointed out that in our model rc is the total number of seg-

ments per PLC chain. In other words, rc is the sum of all

segments belonging to all flexible spacers of a chain.

This ensures large values of rc. If rc tends to infinity, the

function Prc
(x) becomes Gaussian, and for x such as in

(A6) it is of the form:[1]

Prc

Xn

j¼1

ghjÿr

 !
¼ ð3=2 prcÞ3=2

exp ÿ3
Xn

j¼1

ghjÿr

 !�
2rc

" #
ðA7Þ

where rc is the number of Kuhn segments. As discussed

in,[74] the Gaussian distribution can be used in practice for

rc A 10.

The averages in Equation (A1) are:

puðĝhÞP ¼
Z
:::

Z
uðĝhÞPdðĝh;

~Kÿ1r̂Þdĝhdð~Kÿ1r̂Þ ðA8Þ

and

p ln pðĝh; r̂ÞP¼
Z
:::

Z
Pdðĝh;

~Kÿ1r̂Þ ln pðĝh; r̂Þdĝhdð~Kÿ1r̂Þ ðA9Þ

where Pd is the probability density for the PLC system,

and reads:[1]

Pdðĝh;
~Kÿ1r̂Þ ¼ C exp½ÿuðĝhÞ=kT�pðĝh;

~Kÿ1r̂Þ ðA10Þ

Here C normalizes Pd to unity.

Analogical to those in[1], calculations of r.h. sides of

(A9) and (A10), but for uðĝhÞ such as in (A4), followed

by calculation of the Helmholtz function A in (A1) for U

of the form in Equation (3), give the molar Helmholtz

function ~A = A/Nh displayed as Equation (6) in the main

text.
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