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In this article, the thermal conductivity of concrete with vermiculite is determined and

also predicted by using artificial neural networks approaches, namely the radial basis

neural network and multi-layer perceptron. In these models, 20 datasets were used. For

the training set, 12 datasets (60%) were randomly selected, and the residual datasets

(8 datasets, 40%) were selected as the test set. The root mean square error, the mean

absolute error, and determination coefficient statistics are used as evaluation criteria of

the models, and the experimental results are compared with these models. It is found

that the radial basis neural network model is superior to the other models.

Keywords artificial neural networks, concrete, thermal conductivity, vermiculite, numerical

simulation

INTRODUCTION

Economical and environmental constraints are bound to increase in the coming

years, and one effect of this on the construction industry will be the need to obtain more

energy-efficient buildings and construction materials [1]. Buildings are considered as open

systems, and in that sense, they interact with the environment. Part of this interaction

includes thermal energy transmission carried out by the heat transfer mechanisms of

conduction, convection, and radiation. Heat transfer toward the inside of a building

occurs through opaque (roofs and walls) and semitransparent (glass windows, skylights)

materials [2]. Energy use in buildings is a significant factor in the world’s overall energy

consumption and a major contributor to greenhouse gases. Approximately 25–30% of

the total energy currently consumed in the world is used in buildings. About 80% of the

energy consumed in commercial and residential buildings is used for space heating and
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MODELING OF THERMAL CONDUCTIVITY OF CONCRETE 361

NOMENCLATURE

ANN artificial neural network

ARE absolute relative error

ASTM American Society for Testing and

Materials

c center for RBNN

CEM cement type

C-S-H calcium silica hydrate

EN European norm

h hour

HM Hessian matrix

kg kilogram

LM Levenberg–Marquardt

m meter

MAE mean absolute error

Mg magnesium

min minute

mK meter Kelvin

MLP multi-layer perceptron

MLR multiple linear regression

MNLR multiple non-linear regression

r scalar radius

RBNN radial-based neural networks

rj Euclidean length

RMSE root mean square error

SEM scanning electron microscope

TC thermal conductivity

V/C vermiculite-to-cement ratio

W watt

xmax maximum of the training data

xmin minimum of the training data

� activation functions used for RBNN

� metric for RBNN
ıC centigrade

cooling. An important way of achieving better energy efficiency in buildings is to improve

their thermal insulation properties. Reduction of the heat loss in buildings decreases the

consumption of energy and, thus, reduces the cost of heating and cooling [3, 4].

Enhanced thermal protection is a therefore a prerequisite to construct or rehabil-

itate buildings to reach a reasonable energy consumption, satisfactory thermal comfort

conditions, and low operational costs. Energy saving can be obtained by insulation since

a significant part of heat losses or heat gains occurs through walls and ceilings [5–7]. In

recent years, in countries of mild climate, more attention has been given than before

to reducing energy consumption while maintaining or improving comfort conditions

in buildings. To this end, effort has been concentrated on improving the efficiency of

heating appliances and the thermal insulation of buildings. So, heat transfer with the

maximum possible efficiency by using adequate materials is as important as avoiding

heat losses. The knowledge of a material’s physical properties is very important in all

engineering projects. Energy conservation is an important part of any national energy

strategy, and energy conservation in developing countries with inadequate resources is

even more important [8–15]. An analysis of conduction heat transfer through structure

is of great importance in civil engineering problems, such as heat flow into a building in

energy-efficient building design, thermal loading of structures due to diurnal variations

of temperature, planning and design of building for thermal comfort, design of radiation

shields in nuclear power stations, analysis of bridge deck and other exposed structures for

solar thermal loading, etc. The knowledge of thermal conductivity (TC) and other thermal

transport properties of construction materials involved in the process of heat transfer is

essential in predicting the temperature profile and heat flow through the material. The TC

of concrete—one of the most commonly used construction materials—draws importance

[16, 17]. Concrete of low TC is useful for the thermal isolation of buildings [18].

Concrete is a composite material, and since approximately 75% of the concrete

volume is occupied by aggregate, the properties of aggregate greatly affect performance

of concrete. Several properties of aggregate, such as chemical and mineral composition,
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362 O. GENCEL ET AL.

shape, roughness, specific gravity, hardness, strength, and pore structure, depend on the

properties of the parent rock [19]. The use of lightweight and porous aggregates as

a constituent of concrete enables production of lightweight concrete. Due to its higher

porosity, lightweight concrete is a suitable material for thermal insulation of structures [1].

Parameters affecting the TC of concrete are presented in Figure 1.

Lightweight concrete is destined to become a dominant construction material in

the world because of its lower density and unique soundproofing and thermal properties.

Lightweight concrete has a density that is dependent on the size and number of pores

within the sample [20]. Lightweight concrete has many useful applications despite its

lower strength as compared to normal concrete. For instance, concrete lightweight blocks

are widely used in the construction of claddings and load and non-load bearing walls and

partitions. In countries with extreme hot or cold climates, lightweight concrete blocks

possessing low TCs also serve as a thermal insulation material, which reduces energy con-

sumption by reducing the dependence on electricity for air conditioning or heating [21].

Also, lightweight concrete may be used in floor fills, roof decks, sound barriers, insulative

fill around fireplaces, and other non-structural applications. Lightweight concrete is

typically made by incorporating a lightweight aggregate [20], which is generally classified

into two groups: (1) natural (pumice stone, diatomite, volcanic slag, etc.) and (2) artificial

(perlite, schist, expanded clay or vermiculate, slate, etc.) [22].

Heat transfer in concrete is complicated. In order to facilitate a better understanding

of conduction phenomena, one must subdivide the concrete into its constituents and

facets and study the heat transfer through each of these to understand the relative impor-

tance and contribution of the component heat transfer to the overall thermal behavior of

the concrete. A review of earlier investigations reveals that the type of aggregate, porosity,

and moisture content have the most influence on TCs of concrete, while the cement

hydrates exert a smaller influence as their TC varies less. Thus, the TC of aggregates

Figure 1. Parameters affecting TC of cement-based composites. (color figure available online)
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MODELING OF THERMAL CONDUCTIVITY OF CONCRETE 363

primarily determines the insulating quality of the concrete. The TC of rocks, commonly

used as aggregates in concrete, ranges from 1.163 to 8:6 W/mK. Aggregates with less TC

produce the less conductive concrete, whereas the more conductive aggregates produce

more conductive concrete. Thus, aggregate type can cause nearly twice an increase in the

TC of concrete. One way of resolving the problem of energy saving is the use of high-

quality heat-insulating materials. The materials mostly used are based on vermiculite and

diatomite [16].

Vermiculite is a mica-type mineral usually formed by hydrothermal decompositions,

such as biotite and phologopite [23]. It has a layer structure, and the interlayer contains

water molecules and exchangeable cations, mainly Mg2C [24]. Expanded vermiculite is

obtained by calcinating the raw vermiculite ore or its concentrate. Vermiculite expands

as much as 8 to 30 times its original volumes when heated above 300ıC, typically up

to 870ıC–1,090ıC. The interlayer and structural water is converted to steam, and thus,

an efficient heat-insulating material with a density of 60–150 kg/m3 results [25, 26]. It

can be used at temperatures from �240ıC to C1,100ıC. After expansion, it exhibits

a number of advantageous properties, such as low bulk density, low heat conductivity

(0.04–0.12 W/mK), and a relatively high melting point (1,240ıC–1,430ıC) [27]. It also

becomes chemically inert, durable, and environmentally safe. The properties of expanded

vermiculite depends on the quality of the raw material, its fractional composition, heating

rate, holding time at a maximum temperature, cooling rate, moisture content, and the

heating method employed. The particles of expanded vermiculite are generally viewed

as slender plates separated by a thin air gap. Their properties, such as shape, color,

luster, and grain composition, are closely related to the original raw material. Fired,

expanded vermiculite has been used for various industrial and agricultural applications,

including gaskets for high-temperature sealing, such as in catalytic converters; insulation

and fire retardants; various construction products; potting soils; soil conditioners; carriers

for fertilizers; insecticides and herbicides; various livestock applications; and ammonia

filtering in aquaculture [28].

For years, research has been carried out using various methods in order to an-

ticipate the concrete properties. Studying correlation between the thermal property and

the characteristic parameters, e.g., the composition of those materials and their service

conditions, is of importance for designing the proper composites in order to satisfy various

requirements. The development of a model based on existing experimental data becomes

necessary to predict material properties. It may significantly further reduce experimental

work in the design of composite materials. Simulation of material properties generally

involves the development of a mathematical model derived from experimental data; it

is helpful in the optimization of such composite materials as concrete [29]. Therefore,

artificial neural networks (ANNs) have been introduced into this field in recent years

and successfully applied in a number of diverse fields, since the model approaches seem

to have good potential to save time and cut expenses in solving various engineering

problems. However, no study has been carried out to utilize the application of the RBNN

and MLP computing techniques in modeling the TC of concrete. The purpose of this

study is to estimate experimental values of TCs of concrete proportioned with different

cement content and vermiculate content under different elevated temperatures.

The ANN has an ability to learn complex and non-linear relationships that are dif-

ficult to model with conventional techniques. Thus, the ANN has been used successfully

for prediction of concrete properties. Optimization of concrete mix proportioning using
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364 O. GENCEL ET AL.

ANNs was studied in [30–33]. The applicability of neural networks for the prediction

of workability and slump of concrete was investigated in [34–37]. Hardened proper-

ties of concrete, such as concrete strength, ultrasonic pulse velocity, elastic modulus,

mechanical behavior at high temperature, were predicted in [38–43].

As based on an extensive literature survey, and according to the best knowledge of

the authors, there is no published work indicating the input–output mapping capability

of the ANN technique in modeling the TCs of concrete. The aim of this article is to

investigate the accuracy of RBNN and MLP approaches in modeling TCs of concrete. The

performances of the RBNN and MLP models are compared with those of multiple non-

linear regression (MNLR) and multiple linear regression (MLR) models. The presented

article is the first application for modeling TCs of concrete using ANN models.

This paper is organized as follows. The next section introduces the experimental

studies, followed by the methodologies and the applications of model approaches in

the following section. The penultimate section presents experimental test results and the

results of model approaches, with the last section giving conclusions.

MATERIALS AND METHODS

Experimental Studies

Cement type (CEM) I 42.5R portland cement was used as a binder; chemical and

physical properties of the cement are given in Table 1. It complies with the requirement of

European Standards European norm (EN) 197-1 [44]. Expanded vermiculite was obtained

by annealing raw vermiculite at about 600ıC for 10 sec. Raw vermiculite is procured

from the Demircilik vermiculite deposit in Yıldızeli, Sivas, Turkey. The chemical and

physical properties of expanded vermiculite are given in Table 2.

For the mixing procedure, cement and water were first mixed together for 1 min in

a mixer; dried expanded vermiculite is then added to the cement slurry and mixed again

for 3 min to get a homogenous structure. Before producing specimens, trial batches

Table 1. Chemical and physical properties of cement

Composition Percent

Chemical properties

SiO2 19.4

Al2O3 5.6

Fe2O3 2.4

CaO 63.1

MgO 2.6

SO3 2.9

Na2O 0.8

K2O 1

CI 0.01

Insoluble material 3.3

Loss on ignition 3.3

Physical properties

Specific gravity (g/cm3) 3.06

Specific surface (cm2/g) 3,940
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MODELING OF THERMAL CONDUCTIVITY OF CONCRETE 365

Table 2. Properties of expanded vermiculite

Composition Percent

Chemical properties

SiO2 34.1

Al2O3 17.2

K2O 4.5

CaO 6.4

MgO 16.3

Fe2O3 14.7

pH (in water) 6.1

Others 0.7

Physical properties

Color Silver

Shape Accordion-shaped granule

Water-holding capacity 240% (by weight)

Cation-exchange capacity 90 meg/100 gr.

TC value 0.063 watt/m/ıC

Sintering temperature 1,170ıC

Combustibility Non-combustible

Specific heat 0.22 Kcal/KgıC

Bulk density 140 kg/m3

Particle size distribution

Sieve size (mm) Passing (%)

8 100

4 53.3

2 14.1

1 3.8

0.5 2.4

0.25 1.7

0.125 1

were made to determine the water content of each mix at which slump would be zero.

Four different expanded vermiculite to binder ratios of 3, 4, 5, and 6, by volume,

were used; test temperatures were 20ıC, 300ıC, 600ıC, 900ıC, and 1,100ıC. For each

testing temperature, 4 series of cement-based lightweight composite specimens with a

different expanded vermiculite-to-binder ratio were produced, and in total, 20 concrete

series were tested in this experimental research. The mix compositions of each series

are given in Table 3. For the mix code of series, VC3, VC4, VC5, and VC6 refer to

vermiculite-to-binder ratios of 3, 4, 5, and 6 by volume, respectively.

The prepared fresh cement-based composites were cast in standard cylinder (150 mm

in diameter and 300 mm high) and cube (with an edge of 150 mm) molds, in two layers,

each layer being compacted by its self-weight on the shaker for 20 sec. All specimens

were kept in the molds for 24 h at room temperature of about 20ıC and then demoulded;

after demolding, all specimens were cured in water at 23 ˙ 2ıC for 27 days. Tests of

unit weight, apparent porosity, and water absorption were performed on the specimens

at the end of 28 days according to Archimedes principle.
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366 O. GENCEL ET AL.

Table 3. Mix proportions of concrete series

Mix code V/C (by volume) Cement (kg/m3) Vermiculite (kg/m3) Water (kg/m3)

VC3 3 750 149 471

VC4 4 636 180 541

VC5 5 522 187 566

VC6 6 422 192 580

A compressive strength test carried out on three cylinder specimens and the average

values of the test results were reported for each testing temperatures. The compressive

strength test was made in accordance with the American Society for Testing and Materials

(ASTM) C39 [45]. TC tests were made on plate specimens obtained by cutting the cube

specimens into pieces with dimensions of 150�150�25 mm. The cutting procedure was

made before exposing the specimens to high temperatures. The TCs of specimens were

determined by the “hot wire method” according to ASTM C1113 [46]. This method

has wide applications in determining TCs of refractory materials [47–49]. The TC of

a material is the quantity of heat transmitted through a unit thickness in a direction

perpendicular to a surface of unit area, due to a unit temperature gradient under given

conditions. In the mathematical formulation of the method, the hot wire is assumed to be

an ideal infinitely thin and long heat source, which is in an infinite surrounding material

whose TC is to be determined. Applying a constant electric current through the wire,

a constant amount of heat per unit time and unit length is released by the wire and

propagates throughout the material.

In this method, the temperature variation with time at certain locations is measured

instead of measuring heat flow. Because of being transient in nature, TC measurement

by this method takes only a few minutes in contrast to the earlier methods involving

steady-state conditions. For determining the morphological and mineralogical features of

specimens after exposing to high temperatures, fractured surfaces of specimens exposed

to test temperatures were coated with gold in a vacuum evaporator and examined using a

scanning electron microscope (SEM). An electrically heated furnace was used for heating

the specimens. Cylinder and plate specimens from each series were first placed in an oven

and heated from room temperature (20ıC) to 300ıC, 600ıC, 900ıC, and 1,100ıC at an

average rate of 5ıC/min. The specimens were held at the desired test temperature for

approximately 6 h, and then the furnace was turned off; finally, specimens were left to

cool in air until decreasing to room temperature. During the heating period, moisture in

the test specimens was allowed to escape freely. Strength and TC test results of cement-

based composites exposed to high temperatures were compared with the test results of

unheated specimens.

Neural Networks

The ANN modeling approach is a computer methodology that attempts to simulate

some important features of the human nervous system, in other words, the ability to

solve problems by applying information gained from past experience to new problems or

case scenarios. Analogous to a human brain, an ANN uses many simple computational

elements, named artificial neurons, connected by variable weights. The ANN modeling
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MODELING OF THERMAL CONDUCTIVITY OF CONCRETE 367

consists of two steps: to train and to test the network. During the training stage, the

network uses the inductive-learning principle to learn from a set of examples called

the training set. Test data could not be used in training [50]. Among the much different

architectures, the RBNN and MLP architectures are commonly used for prediction.

Programs were written and run for the RBNN and MLP models in the MATLAB

environment (The MathWorks, Natick, Massachusetts, USA).

RBNNs. RBNNs were introduced into the neural network literature by Broomhead

and Lowe [51]. The RBNN model is motivated by the locally tuned response observed in

biological neurons. Neurons with a locally tuned response characteristic can be found

in several parts of the nervous system, for example, cells in the visual cortex sensitive

to bars oriented in a certain direction or other visual features within a small region of

the visual field [52]. The RBNNs utilize a clustering process on the input data before

presentation to the network and use different non-linear activation functions that are

locally tuned to cover a region of the input space. The network structure is shown in

Figure 2, and it consists of an input layer, a single hidden layer containing the same

number of nodes as the cluster centers, and an output layer [53].

The basis functions in the hidden layer produce a significant non-zero response

to input stimulus only when the input falls within a small localized region of the input

space. Hence, this paradigm is also known as a localized receptive field network [54].

Transformation of the inputs is essential for fighting the curse of dimensionality in

empirical modeling. The type of input transformation of the RBNN is the local non-linear

projection using a radial fixed-shape basis function. After non-linearly squashing the

multi-dimensional inputs without considering the output space, the radial basis functions

play a role as regressors. Since the output layer implements a linear regressor, the only

adjustable parameters are the weights of this regressor. These parameters can therefore

Figure 2. RBNN structure.
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368 O. GENCEL ET AL.

be determined using the linear least square method, which gives an important advantage

for convergence. The most general formula for any RBNN is

y.x/ D '..x � c/t ��1.x � c//; (1)

where � denotes the activation functions used, c is the center, and � is the metric. The

term ..x � c/t ��1.x � c// is the distance between x and center c in the metric defined

by � . The metric is often Euclidean. In this case, � D r2I for some scalar radius r and

Eq. (1) simplifies to

y.x/ D '

�

.x � c/t .x � c/

r2

�

: (2)

According to Fausett [55], the Euclidean length is represented by rj , which measures

the radial distance between the datum vector y D .y1; y2; : : : ; ym/ and the radial center

Y.i/ D w1; w2; : : : ; wmj /; yi and wij are the output and weights, respectively. This can

be written as

rj D ky � Y .j /k D

"

m
X

iD1

.yi � wij /2

#1=2

: (3)

A suitable transfer function is then applied to rj to give

�.rj / D �
�

ky � Y .k/k
�

: (4)

Finally, the output layer (k D 1) receives a weighted linear combination of �.rj /:

y.k/ D

n
X

j D1

c
.k/
j �.rj / D

n
X

j D1

D c
.k/
j �

�

ky � Y .k/k
�

: (5)

This means that the RBNN can be viewed as a special case of a linear regression model.

The RBNN method does not perform parameter learning as in the back-propagation

networks but only performs a linear adjustment of the weights for the radial bases. This

characteristic of the RBNN gives the advantage of a very fast converging time without

local minima, since its error function is always convex [56, 57]. In this study, different

numbers of hidden neurons and spread constants are examined for the RBNN models

with a simple trial–error method.

MLPs. The network consists of layers of parallel processing elements, with each

layer being fully connected to the proceeding layer by interconnection strengths or

weights W . A multilayer feedforward network consists of an input layer, one or more

hidden layers, and an output layer, as shown in Figure 3. Computations take place in the

hidden and output layers only. Various combinations of network architecture to develop an

optimum ANN model were examined. ANN .i; j; k/ indicates a network architecture with

i , j , and k neurons in the input, hidden, and output layers, respectively. Figure 3 illustrates

a three-layer neural network consisting of layers i , j , and k, with the interconnection

weights Wij and Wjk between the layers of neurons. Initial estimated weight values are

progressively corrected during a training process that compares predicted outputs with
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Figure 3. MLP structure.

known outputs, and back-propagates any errors (from right to left in Figure 3) to deter-

mine the appropriate weight adjustments necessary to minimize the errors. Throughout

ANN simulation, the adaptive learning rates were used for the purpose of faster training

speed and solving local minima problem. For each epoch, if performance decreases

toward the goal, then the learning rate is increased by the factor learning increment. If

performance increases, the learning rate is adjusted by the factor learning decrement.

The numbers of hidden layer neurons were found using a simple trial–error method in

applications. The MLPs were trained using the Levenberg–Marquardt (LM) technique,

which is more powerful than the conventional gradient descent techniques [58–60]. The

MLP can have more than one hidden layer; however, theoretical works have shown that

a single hidden layer is sufficient for MLPs to approximate any complex non-linear

function [61–63]. Therefore, in this study, one-hidden-layer MLP is used.

LM algorithm. The LM algorithm was designed to approach second-order train-

ing speed without having to compute the Hessian matrix (HM) [64, 65]. When the

performance function has the form of a sum of the squares (as is typical in training

feedforward networks), then the HM can be approximated as

HM D J t J; (6)

and the gradient can be computed as

g D J t e; (7)
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370 O. GENCEL ET AL.

where J is the Jacobian matrix, which contains first derivatives of the network errors

with respect to the weights and biases, and e is a vector of network errors.

The LM algorithm uses this approximation to the HM in the following Newton-like

update:

xkC1 D xk � ŒJ t J C �I ��1J t e: (8)

When the scalar � is zero, this is just Newton’s method using the approximate HM. When

� is large, this becomes gradient descent with a small step size. Newton’s method is

faster and more accurate near an error minimum, so the aim is to shift toward Newton’s

method as quickly as possible. Thus, � is decreased after each successful step (reduction

in performance function) and is increased only when a tentative step would increase the

performance function. In this way, the performance function will always be reduced at

each iteration of the algorithm. The application of the LM to neural network training was

described in [59, 66–68].

EXPERIMENTAL RESULTS

Physical Properties

Unit weight, apparent porosity, and water absorption of unheated specimens after

28 days curing are given in Table 4. Apparent porosity and water absorption decreased

with the increase of vermiculite-to-cement (V/C) ratio while unit weight was decreasing.

This is a result of increasing void ratio depending on the increase of expanded vermiculite

volume in the mix. Unit weights for all series specimens obtained in the range of 1,078

to 1,332 kg/m3. On the other hand, apparent porosity changed approximately between

30 and 37%, and the change in water absorption was also between 24 and 35%.

Expanded vermiculite is a preferable lightweight material in the manufacturing

of lightweight construction composites, heat-insulation and fire-resistant materials etc.,

because of its high pore structure and very low bulk density.

Compressive Strength

Decreases in compressive strengths were observed up to the heating temperature

of 600ıC for all series. However, there was a recovery in strength at the temperature of

900ıC, and compressive strengths at that point were greater than the strengths at 600ıC.

Recovery was greater for specimens containing higher vermiculite content. This behavior

may be due to re-expansion of vermiculite, resulting in filling or closing of microcracks

Table 4. Test results of unit weight, apparent porosity, and water absorption

Mix code V/C (by volume)

Unit weight

(kg/m3)

Apparent porosity

(%)

Water absorption

(%)

VC3 3 1,332 29.9 24.4

VC4 4 1,183 35.8 30.7

VC5 5 1,116 36.2 31.1

VC6 6 1,078 37.4 34.6
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MODELING OF THERMAL CONDUCTIVITY OF CONCRETE 371

Figure 4. Residual compressive strengths at different temperatures.

and voids in microstructure. At the heating temperature of 1,100ıC, a significant decrease

in compressive strength was noted for each series. These results are shown in Figure 4

with error bars. Relative residual compressive strengths in comparison with the strength

at 20ıC after heating are also given in Figure 5. Similar results were obtained for splitting

tensile strength. A failure of specimens with a high cement content (which is the lowest

V/C ratio) occurred when subjected to 1,100ıC; the residual strengths were not obtained.

From the residual compressive and splitting strengths point of view, it can be

stated that cement-based composites, produced by using expanded vermiculite aggregate,

showed a good performance up to 900ıC. A considerable reduction in strength was

observed above 900ıC. Therefore, it can be concluded the temperature above 900ıC was

a critical zone for strength loss of cement-based composites produced by using expanded

vermiculite.

TC

The variation of TCs of concrete with V/C ratio and heating temperature T is

shown in Figure 6 with error bars. Relative residual TC in comparison with the TC at

20ıC after heating is also given in Figure 7. In Figure 8, a decrease in TC is observed

up to the heating temperature of 900ıC for all V/C ratios. However, a slight increase

is observed at the heating temperature of 1,100ıC. The maximum reductions in TC of

concrete occurred at 900ıC for all V/C ratios. Those reductions for V/C ratios of 3, 4,

5, and 6 were 58.4, 60.1, 63.7, and 63.6, respectively, compared to the unheated control

specimens. The highest values of TC of concrete is obtained for specimens produced with
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372 O. GENCEL ET AL.

Figure 5. Relative residual compressive strengths after heating (compared to strength at 20ıC).

Figure 6. Residual TC at different temperatures.
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MODELING OF THERMAL CONDUCTIVITY OF CONCRETE 373

Figure 7. Relative residual TC after heating (compared to TC at 20ıC).

Figure 8. Response surface of TC. (color figure available online)
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374 O. GENCEL ET AL.

a V/C ratio of 6, in which cement content is high, for all heating temperatures. It can be

stated that reductions were partly due to the density. Density decreased with increasing

expanded vermiculite content in the mix. Additionally, Akman and Tasdemir [69], Blanco

et al. [70], and Demirboga [71] also reported that the TC decreased due to the decreasing

of concrete density. Lu-Shu et al. [72] stated that the TC increased with increasing

density by giving a relation, experimentally formulated, between the density and TC.

The decreases in the TC of concrete may be also due to the internal crack growth and

deterioration in the microstructure and the increase in porosity of specimens by means

of re-expansion of vermiculite during thermal treatment.

SEM Analysis

Dehydration, including the release of chemically bound water from calcium silicate

hydrate (C-S-H), becomes significant above 110ıC. The dehydration of the matrix and

the thermal expansion of the aggregate increase the internal stresses; from 300ıC upward,

micro-cracks appear through the material. When the temperature exceeds 400ıC, C-S-H

begins to damage and the strength of the concrete decreases rapidly; the structure of

C-S-H disperses at about 900ıC [17].

SEM investigations were conducted on air-cooled specimens of all mixtures for each

heating temperature (T ). The SEM observations are given in Figures 9a to 9e. From the

SEM images, changes in the cement paste phase at the heating temperature of 300ıC

were observed when compared to 20ıC, and it may be concluded that a deterioration

in microstructure starts at the heating temperature of 300ıC. However, there was no

additional significant damage in the cement phase up to the heating temperature of 900ıC.

At 900ıC, it may be said that the bond between cement paste and vermiculite aggregate

may increase by resulting in some chemical reactions, since increases in strength were

observed at those temperatures. At 1,100ıC, it is observed that the structure of C-S-H

dispersed and bond strength became weak since the transition zone started to disappear.

The increase in internal cracking and pore structure coarsening of the specimens at

1,100ıC (seen in Figure 9e) is probably responsible for the occurrence of a significant

decrease in compressive and splitting tensile strengths.

ANALYSIS RESULTS

In this study, ANN models, namely RBNN and MLP, and the MLR and MNLR

models are devised to estimate the TC of concrete containing vermiculite. For this

purpose, the TC was chosen as a dependent variable and T , C , P , w, and V were

chosen as independent variables. The data presented herein were used in developing these

models. Twenty experimental datasets were used. For the training phase, 12 datasets (ap-

proximately 60%) were randomly selected, and the remaining 8 datasets (approximately

40%) were selected for testing phase.

MLR and MNLR were performed for the 12 experimental datasets and tested using

the remaning 8 datasets. The obtained MLR and MNLR equations are as follows:

TC D 0:4956 � 0:0002 � T C 0:0003 � C � 0:0009 � w C 0:0009 � V; (9)

TC D 2:993 � 10�7 C 1:312 � w0:423 � V 1:667

T 0:196 � P 1:372
: (10)
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MODELING OF THERMAL CONDUCTIVITY OF CONCRETE 375

Figure 9. SEM analysis: (a) T D 20ıC, (b) T D 300ıC, (c) T D 600ıC, (d) T D 900ıC, and (e) T D

1,100ıC.
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376 O. GENCEL ET AL.

Before applying the ANN to the data, the training input and output values were normalized

using the equation

a
xi � xmin

xmax � xmin

C b; (11)

where xmin and xmax denote the minimum and maximum of the training and test data,

respectively. Different values can be assigned for scaling factors a and b. There are no

fixed rules as to which standardization approach should be used in particular circum-

stances [73]. A range of 0.2–0.8 increases the extrapolation ability of the ANN models

[74–76]. Therefore, in this study, a and b were taken as 0.6 and 0.2, respectively.

Two different ANN models, namely RBNN and MLP, were developed to improve

MLR and MNLR results in estimation of the TC of concrete. For this purpose, two

different program codes, including neural networks, were written in MATLAB language.

Different ANN architectures were tried using these codes, and the appropriate model

structures were determined. Different numbers of hidden neurons and spread constants

were examined for the RBNN models. The optimum hidden-layer neuron number and

spread constant value that give the minimum root mean square errors (RMSEs) were

found to be 3 and 1.2, respectively. The best MLP results were obtained for three neurons

in the hidden layer using the logarithmic sigmoid and linear activation functions for the

hidden- and output-layer neurons, respectively.

The RMSE, mean absolute error (MAE), and determination coefficient (R2) values

of RBNN, MLP, MLR, and MNLR for both training and testing phases are given in

Table 5. The RMSE and MAE shown in Table 5 are defined as follows:

RMSE D

v

u

u

t

1

N

N
X

iD1

Œ.TC/imeasured � .TC/ipredicted �2; (12)

MAE D
1

N

N
X

iD1

j.TC/imeasured � .TC/ipredicted j; (13)

in which N is the number of datasets.

The ANN models were then tested, and the results were compared by means of

RMSE, MAE, and R2 statistics, as shown in Table 5. As seen from Table 5, although the

MLP model has the smallest RMSE (0.005) and MAE (0.0039) and the highest R2 (0.998)

for the training phase, the RBNN model has the smallest RMSE (0.013), MAE (0.011),

and R2 (0.991) for testing phase. According to the test results, the RBNN and MLP

Table 5. RMSE, MAE, and R2 statistics of RBNN, MLP, MNLR, and MLR models

Training Testing

Method RMSE MAE R2 RMSE MAE R2

RBNN 0.006 0.005 0.997 0.013 0.011 0.991

MLP 0.005 0.004 0.998 0.014 0.011 0.988

MNLR 0.027 0.024 0.939 0.027 0.019 0.922

MLR 0.059 0.047 0.786 0.045 0.027 0.805
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Table 6. Test results and calculated TCs by RBNN, MLP, MNLR, and MLR models

TC ARE (%)
Number

of tests Observed RBNN MLP MNLR MLR RBNN MLP MNLR MLR

1 0.37 0.35 0.37 0.31 0.37 7.1 1 15.8 0.8

2 0.22 0.23 0.22 0.25 0.25 5.9 3.4 15.2 15.6

3 0.47 0.46 0.45 0.48 0.36 1.8 2.8 3.4 23.3

4 0.22 0.22 0.21 0.25 0.24 1.6 3.9 13.5 10.9

5 0.14 0.15 0.15 0.19 0.13 8.1 4.3 32.9 7.7

6 0.17 0.17 0.15 0.18 0.09 2.6 11.2 6.1 46.7

7 0.33 0.32 0.30 0.30 0.27 3 8.5 7.9 18.5

8 0.14 0.14 0.15 0.17 0.15 6.5 1.2 6.1 4.1

models provide RMSE, MAE, and R2 values close to each other. The RBNN estimations

are slightly better than those of the MLP, and these two produced more accurate results

than the MNLR and MLR.

The observed TC values and those predicted by RBNN, MLP, MNLR, and MLR

models are given in Table 6. The absolute relative errors (AREs) for RBNN, MLP, MNLR,

and MLR models are also presented in Table 6. The ARE of model prediction was used

as the accuracy of the models.

The ARE is defined as

ARE.%/ D

ˇ

ˇ

ˇ

ˇ

TCobserved � TCpredicted

TCobserved

ˇ

ˇ

ˇ

ˇ

� 100: (14)

Observed TC values and estimates by the RBNN, MLP, MNLR, and MLR models are

shown in Figure 10. It can be seen from Figure 10 that the MNLR and MLR performances

are unsatisfactory in the prediction of TC values in comparison with the RBNN and

MLP models. The RBNN and MLP models seem to have similar accuracy, and both are

significantly superior to the MNLR and MLR models.

GENERAL DISCUSSION AND CONCLUSION

The developed high-temperature heat-insulating cement-based materials produced

by using expanded vermiculite can be used in thermal power plants with the hot-

wall temperature as an alternative to lightweight chamotte components and fibrous heat

insulators. Since the V/C ratio and heating temperature are the two significant parameters

influencing the TC of cement-based composites, results of the TC as a function of these

parameters were compiled. TC decreased by increasing expanded vermiculite in the mix

and heating up to the temperature of 900ıC. The TC for V/C ratios of 3, 4, 5, and 6

was observed to be lower when compared to the unheated control specimens as 58.4%,

60.1%, 63.7%, and 63.6%, respectively. The significant degradations and damages in

the microstructure of concrete produced by using expanded vermiculite occur above the

temperature of 900ıC. It is observed that the critical exposure temperature for loss of

compressive strengths is above 900ıC.

The development of a model based on existing experimental data becomes necessary

to predict material properties. It may significantly reduce further experimental work in
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378 O. GENCEL ET AL.

Figure 10. Plot of observed and predicted TC using by RBNN, MLP, MNLR, and MLR.
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the design of composite materials. Simulation of material properties generally involves the

development of a mathematical model derived from experimental data; it is helpful in

the materials optimization, especially for composites like concrete. For this purpose, the

ANN has been introduced into this field in recent years and successfully applied in a

number of diverse fields, including engineering problems, since the above-mentioned

model approaches seem to have good potential to save time and cut expenses in solving

various engineering problems.

This article evaluates RBNN and MLP approaches for determining the TCs of con-

crete. For this purpose, experimental studies were conducted to investigate the influence

temperature, cement, porosity, vermiculite, and water on TCs of concrete, and models

are developed to predict TCs of concrete. In these models, 20 datasets are used. For

the training set, 12 datasets (60%) were randomly selected, and the residual datasets

(8 datasets, 40%) were selected as the test set. Results of experimental studies were used

to compare with those obtained by the RBNN, MLP, MNLR, and MLR approaches. To

verify the models, regression equations are carried out and compared with the trained

RBNN, MLP, MNLR, and MLR. The high value of R2 and low value of RMSE and

MAE of the testing set indicated that the RBNN can be used for the prediction of the TC

of concrete. By the statistics of the effect of variables on the test results based on MNLR

and MLR models, vermiculite was the most influential variable on the TC. This study has

indicated that the RBNN model is the best predictor of TC between four models because

of the best value of RMSE, MAE, and R2 statistics and can be employed successfully in

estimation of TC for concrete. The results indicate that the developed models are reliable,

accurate, and result in good agreement with the experimental studies. The study showed

that within the range of input parameters being investigated, the results of the RBNN

show consistency and accuracy when compared to the results as given by others. Thus,

the present study suggests that the RBNN is an alternative approach for TC assessment

of concrete against other prediction methods.

Cement-based material produced by expanded vermiculite can be used as a new

material and structural component with good physical material properties for housing and

other structures. In order to develop or increase the performance of similar materials in

the future, mix proportion may be optimized by taking into account different mix propor-

tions and curing conditions. Also, polymer-based lightweight concretes using expanded

vermiculite may be produced as an alternative to cement-based one. Finally, composites to

be produced with expanded vermiculite may become a viable and promising construction

material for the point of view of energy conscious and ecological design in future.
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