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Abstract
Deformation brings out important features of viscoelastic behaviour in
polymers. To achieve a better understanding of the underlying phenomena,
molecular dynamics simulations have been performed for one- and two-phase
polymeric materials created on the computer. An external force was applied to
the materials and their response followed as a function of time.

The mechanical properties were found to be strongly affected by the
loading conditions, particularly the force increase rate. The simulated materials
exhibit a realistic response: the behaviour is more rigid and brittle when the
force increases at a higher rate. The material is able to partially recover
in a viscoelastic manner if the force is removed after deformation. There
are both quantitative and qualitative differences between the engineering
stress and true stress. The presence of a rigid phase in polymer liquid
crystals (PLCs) significantly influences their mechanical properties. Higher
liquid crystalline (LC) phase concentrations increase stiffness while they make
the polymer more brittle. The viscoelastic phase shift is smaller in PLCs than
in one-phase amorphous polymers; the LC-rich islands in the LC-poor matrix
make the material more elastic.

When a creep force is applied for some time and then removed, the material
exhibits partial viscoelastic recovery. The extent of that recovery is dependent
on the magnitude of the creep force; a higher applied force results in less
recovery. It also depends on the time during which the force was applied;
longer times will result in less recovery. These results could be expected,
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confirming the model’s validity. Unexpectedly the deformation mechanisms at
higher stress levels were found to be different from those taking place at lower
force levels. This reflects on a more localized deformation for higher creep
force levels.

(Some figures in this article are in colour only in the electronic version)

Nomenclature

List of symbols and abbreviations:

MD Molecular dynamics
CGM Computer-generated material
t Number of simulation steps
LC Liquid-crystalline
PLC Polymer liquid crystal
fc Fraction of flexible bonds in the long conformation state
Ḟ Force increase rate
IF–t Integral of the force–time curve
Eapp Apparent modulus
Esec Secant modulus
ε Strain
σn Engineering stress
σt True stress
δ Relative peak shift

1. Introduction

Computer simulations have been used to study the behaviour of polymeric materials under
external tensile loads. The present paper addresses the viscoelastic phenomena associated
with large-scale deformation of these materials. Coarse-grain simulations allow the study of
polymeric materials at a mesoscopic level, where the behaviour of individual macromolecular
chains can be followed as they respond to the applied load.

Mechanical properties and the performance of polymers and polymer-based systems
are a relevant topic for both the scientific community and the manufacturing industry [1].
However, the properties of polymers can be difficult to characterize or to predict due to their
complex structure and a variety of factors that influence the material mechanical behaviour—
thermomechanical processing history, time-dependent behaviour, anisotropy, etc.

The viscoelastic nature of polymers is a major factor in determining their properties.
Although experimental techniques have been employed for many years in the study of
viscoelasticity, molecular-level phenomena are far from sufficiently understood. The present
simulations aim at providing necessary insights.

Molecular dynamics (MD) is the most widely used method for the simulation of materials.
It has been extensively employed to study phenomena which cannot be followed experimentally
or to complement information resulting from experiments. A more detailed explanation of the
MD method is provided in section 2. As argued by Fossey [2], computer simulations present
several advantages, including evaluation of the material response under ideal or hypothetical
conditions and also investigating the effect of variables independently of one another.
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Other methods of choice within the field of polymer simulations are (a) the Monte Carlo
method, which has been employed mostly at the atomistic level [3]; (b) the kinetic model of
fracture, used by Termonia and Smith to study the mechanical behaviour of polymers [4, 5]
and simulate spider dragline silk [6]; (c) fracture mechanics, used, for example, by Binienda
and co-workers to study cracks [7, 8] and reviewed by Nishioka [9]. The various simulation
methods were described in detail by Fossey [2], together with examples of their applications.

Among many other topics, MD methods have been used to investigate diffusion and
permeation [10, 11], x-ray scattering [12], friction [13] and spider silk elasticity [14]. A MD
study of polymer-forming rigid molecules was presented by Farmer and his colleagues [15].
While the molecules investigated are generally recognized as rigid, changes in the end-to-
end distances as large as 16% have been found. The simulation results of Farmer provide
an explanation for the previously not understood short persistence lengths in solutions and
also for some electron micrographs. The mechanical and thermal properties of polyimide
nanocomposites have been simulated by Qi et al [16], showing that the reinforcing carbon
nanotubes increase the material’s ability to resist deformation and reduce the softening effect
of an increase in temperature.

More relevant to the topic of this paper is the use of MD to study viscoelasticity in polymers
and polymer-based materials. The problem of entanglements in viscoelastic polymer melts has
been addressed by several authors [17,18]. Polymers containing nanoparticles have also been
studied [19]. However, most simulations concerning viscoelasticity deal with solutions and
fluids [20–22]. Kroger and co-workers have reported on MD simulations of polymeric fluids
and melts in order to study the viscoelastic flow in complex geometries [23] and the effect of
the alignment of chain ends on the viscoelastic properties [24].

The state of the art in computer simulations of polymeric materials includes work by Grest
on poly(dimethylsiloxane) [25, 26], which exhibits excellent agreement with x-ray scattering
measurements. Auhl and co-workers investigated different methods for equilibrating long
chain polymer melts [27]. Rottler and Robbins have studied shear yielding in glassy polymers
under triaxial loading [28], as well as the growth and failure of crazes in amorphous glassy
polymers [29, 30]. Five papers pertaining to recent advances in modelling of polymers by
different authors were collected in a special section by Davies (see editorial note [31]).

Creep is a mechanical response of a material characterized by a time-dependent strain
increase as a result of the action of a constant applied load. It is a phenomenon which
manifests itself in a wide variety of circumstances, including, for instance, the spreading
of asphalt in Earth’s gravitational field. In polymers, creep may occur readily at ambient
or moderate temperatures and cause premature failure of a part—even at stress levels well
below the expected material strength. In fact, creep is an interesting viscoelastic evidence of
enormous engineering importance; the design of plastic parts should take creep into account
if the service involves imposition of loads for relatively long times.

There is no generally accepted method for measuring creep. A method for evaluating
flexural creep is described in the ASTM D674 standard. Although used frequently, that
standard amounts to a series of recommended experimental practices and precautions to be
taken when using creep data. Experimental creep measurements are often made over a long
period of time—several months to a year or more. This in spite of the fact that long-term
values can be well predicted from relatively short-term tests using the concept of the chain
relaxation capability (CRC); see chapter 5 in [1]. Thus, creep for a multiphase polymer liquid
crystal (PLC) was predicted for 17 decades on the basis of one-hour tests using an equation
for the temperature shift factor aT derived from the CRC concept [32].

While creep is so prevalent in polymers, it appears also in other classes of
materials including metals. Therefore, modelling of creep has been done for metals and
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metal-matrix composites, using either viscoelastic models [33] or statistical and numeric
approaches [34–36]. Most of these use the finite-element model to perform numerical
simulations of creep, and are thus restricted to the capabilities of the continuum approach.
Creep in SiC and glass-fibre reinforced polymer-based composites has also been studied using
the continuum numeric [37,38] and damage mechanics [39] models. Some attempts have also
been made using MD [40] to study creep in polycrystalline microstructures.

The present work encompasses both amorphous polymers and PLCs, which are typically
copolymers containing rigid LC sequences combined with flexible sequences [41]. Thus, PLCs
can also be defined as molecular composites; in contrast to heterogeneous composites (HCs),
the rigid reinforcing units here are connected to flexible units (chain sequences) by primary
chemical bonds. This feature results in a series of improved properties [42, 43]. However,
their complexity limits the potential creation of improved PLCs, even though they have
been studied using statistical mechanics [44], viscoelastic models [32, 45] and experimental
methods [41–43]. Results from computer simulations might provide information needed to
establish comprehensive relations between the structure and properties of these materials.

The present paper is a continuation of previous work in the field. Early work concerned the
stress relaxation phenomena in both metals and polymers [46, 47]. After that the mechanical
properties [48] and the crack formation and propagation phenomena in PLCs [49] were
investigated. Key issues here are ‘where cracks form’ and ‘how they propagate’. These could
have been expected to appear in the flexible matrix which is relatively weak or in the reinforcing
phase which is relatively rigid. Simulations have shown that cracks appear preferentially near
the second-phase agglomerates in close proximity and grow along the flexible/rigid interface.

Computer simulations were also employed to study the tribological properties of polymeric
materials [50]. Recent work focused on the molecular deformation mechanisms taking place in
amorphous polymers and PLCs [51], confirming that the deformation mechanisms are mainly
determined by the local chain structure, the presence of chain entanglements and the second
phase spatial distribution. The morphology of the material, such as the skin-core ratio in
injection moulded parts, was also shown to affect its properties [52].

As mentioned above, it is important to understand that computer simulations are performed
to complement experimental testing, not to replace it. The concomitant use of both methods,
together with theoretical approaches, should yield a synergetic effect which will enable the
creation of new knowledge-based advanced materials.

2. Simulation model

The amorphous polymer chains are represented by the statistical segment model, as advocated
by Flory [53], in which several repeating units of a chain are treated as a single statistical
segment. This model is often labelled a coarse grain model and allows for simulations at a
larger scale than those using the united-atom model or those performed at the atomistic level.
The creation of the polymeric materials on the computer is discussed in section 3.

Pair-wise interactions are defined for the segments based on their nature (flexible or rigid)
and the type of interaction (primary or secondary). The interaction potentials are defined
as a function of the inter-segmental distance. As both one- and two-phase materials were
considered, it was necessary to define 4 interaction potentials.

The primary (intra-chain) bonds between rigid LC segments are described by a steep
Morse-like potential, significantly limiting the bond extension, and thus, their mobility; see
equation (1). The primary (intra-chain) bonds between flexible segments are described
by a spliced double-well potential that allows for a change in bond conformation which
may occur in real polymer chains; see equation (2). Much weaker secondary (inter-chain)
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Table 1. Values of different interaction potentials parameters.

Parameter Value Unit

γr 10 (Length)−1

γf 2 (Length)−1

U0 0.05 Energy
� 0.732 Length

interactions are described by Morse-like potentials with a relatively broad well, with a smoothed
cut-off radius at 2.5σ , where σ is the equilibrium inter-segmental distance. Interactions
between unlike segments are always treated as rigid. The potentials were chosen so that the
amorphous chains behave as above Tg (the glass transition temperature), with a viscoelastic
character.

Ur(R) = {1 − e(γr(1−R))}2 (1)

Uf(R) =




{1 − e[γf (1−R)]}2, R � 1

8U0[(1 − R)/�]2, 1 < R � 1 + 0.25�

U0{1 − 8[1 + 0.5� − R)/�]2}, 1 + 0.25� < R � 1 + 0.75�

8U0[(1 + � − R)/�]2, 1 + 0.75� < R � 1 + �

{1 − e[γf (1+�−R)]}2, R > 1 + �

(2)

In equations (1) and (2), R is the intersegmental distance, U0 is the energy barrier for
a conformational transition, � is the distance between potential wells in flexible bonds and
γr and γf , respectively, define the width of the well for the rigid and flexible bonds. Their
values are provided in table 1.

The MD method has been employed in the simulation of the time-dependent behaviour
of the system. A leap-frog algorithm [54] was implemented to calculate the time evolution.
Reasons for the choice of MD over Monte Carlo or Brownian dynamics methods have been
formulated before [48, 49].

The MD method was first introduced by Alder and Wainwright to study the phase diagram
of a system comprising hard spheres [55]. Continuous interaction potentials were later
introduced in order to obtain a better representation of the forces in physical systems. The
next major progress was made by Rahman, who implemented a realistic potential for liquid
argon [56], establishing the foundation for the majority of the MD work done since then.

During the simulation, each particle in the system (statistical segments in this case) is
characterized by three Cartesian coordinates and three momentum components along the main
axes. At every time step of the simulation, these variables are recalculated to provide the
evolution in time. In the MD method, time is an explicit variable, allowing for all particles to be
moved simultaneously at each time step—this is in contrast to the traditional MC approaches.
MD thus allows for the calculation of time-dependent properties, a particularly important
feature when dealing with viscoelastic materials.

Throughout this paper time is measured in simulation steps, since the status of the material
is not recorded at every time step but only at every 2000 time steps. Thus, each simulation step
corresponds to 2000 time steps. For using the MD simulation method, the forces acting on the
particles are assumed to be nearly constant over very short periods; this defines the time step
for the simulation. In the limit of short time steps it can be shown that this procedure samples
states accessible in the micro-canonical ensemble, which implies maintaining the number of
particles, volume and energy (NVE) constant throughout the simulation. Additional features
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can be added to the algorithm in order to specify the configurational temperature, or allow the
simulation to access a range of energies and/or pressures that correspond to either the canonical
or the isothermal–isobaric ensembles.

The simulations reported in the present paper were performed at a constant (room)
temperature in order to avoid the effect of stochastic thermal forces, since the purpose is
to study non-thermal sources of polymer fracture [47]. Thus, the simulations were carried out
in the isothermal ensemble (NVT), with the constant temperature maintained by coupling the
system to an external bath, using what is often termed the Berendsen thermostat [54].

Before the simulation begins, the segments are disturbed from their initial lattice-based
positions by a small random value (less than 1% of the equilibrium intersegmental distance).
At the first stage of the simulation the material is allowed to equilibrate for 2000 time steps
without any external forces being applied. The perturbation from the ideal lattice positions,
followed by equilibration, results in a starting configuration appropriate for the off-lattice
simulation. The 2000 time steps were found adequate for the material to recover from the
induced perturbation; after this period the segments are merely oscillating near equilibrium
distances. When the quasi-equilibrium state has been reached, a uniaxial external tensile force
is applied to the edges of the material. For the simulations reported in the present paper, the
force is applied along the x-axis. The state of the system is monitored and recorded periodically.
The value of the external force can be controlled at each time step, as described in section 4.1.
The previous work had focused on large-scale deformation up to fracture under a continuously
increasing tensile force [49]. The results of the present paper were obtained under an external
force increasing from an initial value of zero up to a pre-determined value and then decreasing
at the same rate.

Uniaxial extension constitutes the most widely used mechanical test. At each instant, the
engineering stress (σn) is calculated as the ratio of the applied tensile force to the initial cross-
sectional area, σn = F/A0. However, during that extension the minimal cross-sectional area
(Am) of the specimen decreases compared with the value measured before force application.
The true stress (σt) takes into account the change in time of the minimal cross-sectional area,
σt = F/Am. Failure of the specimen occurs earlier than the engineering stress values would
suggest. As the present simulations have the capability to evaluate both kinds of stress, the
differences between them are presented and discussed below.

Recently, a procedure for calculating true stress in computer-generated materials (CGMs)
has been proposed [57]. The CGM is divided into 10 parallelepiped sections of equal length
along the x-axis (the number of sections could easily be increased if a more detailed analysis
was required); see figure 1(b). The geometry of each section is described by the position of the
eight segments at its corners. These corner segments are assigned to their respective sections
at the beginning of the simulation and their position tracked in time.

Each section can thus be characterized by two cross-sectional areas: a left cross-sectional
area defined by the leftmost segments (Al) and a right cross-sectional area defined by the
rightmost segments (Ar); see figure 1(b). The cross-sectional area of the section (on the y–z

plane) is simply the average of Al and Ar. True stress σt can then be calculated at each time
step based on the cross-sectional area. By definition, the highest value of σt found in any
section is the true stress in the specimen; see equation (3).

σt = Fext

min{Ā1, Ā2, . . . , Ā10}
. (3)

Due to the non-homogeneous nature of the deformation process, with both localized
necking and crack formation occurring under different conditions, the shape of the true stress
curve should be quite different from that of the engineering stress. Moreover, abrupt changes
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Figure 1. A CGM within a simulation cell containing approximately 1800 segments: (a) sphere
representation: light spheres represent the flexible segments that constitute the amorphous chains,
while dark spheres represent rigid segments which are placed at both edges along the x-axis to
prevent chain pullout due to the direct force application on these segments; (b) chain representation:
division into sections and detail of a section. Note that each chain is represented in a different shade
of grey for easier visualization.

in the true stress are often observed, corresponding to the occurrence of specific phenomena
at a sufficiently large scale throughout the material (e.g. crack propagation).

It should be clear from this description of the true stress measurement procedure that no
periodic boundary conditions are used in the present simulations. Otherwise, it would not be
possible to measure the changes in the cross-sectional area as described above.

Some unavoidable approximations are implicit in this analysis: whenever a segment is
intersected by the boundary between two sections it is considered as belonging to only one of
them, and a very small number of segments sometimes escape the overall boundaries of all
sections. These effects have been thoroughly tested and present a negligible effect on the final
results. However, when the system reaches large-scale deformation, the shape of the sections
may become inadequate for calculating the cross-sectional area. In these cases, the user must
determine up to which simulation step the values of the true stress should be considered.

As the present simulations are conducted at the mesoscale, the use of the general concept
of macroscopic strain at this scale is arguable. The strain is thus calculated based on the
deformation of the sections, that is, from the distance between the leftmost and the rightmost
cross-sections of the material (Al of section 1 and Ar of section 10). The geometry of the
sections is also the basis for determining the free volume in the material, although the results
pertaining to that analysis will be discussed elsewhere.

It should also be pointed out that as in earlier work [48], a coherent dimensionless system
of units is used. The length of a non-strained bond corresponds to a unit of length, the mass of
a single statistical segment corresponds to a unit of mass and the energy needed to dissociate
a bond corresponds to a unit of energy. All other quantities can be derived from these; for
example, a unit of force is given by the ratio of one unit of energy to one unit of length.

Further details concerning the simulation model were previously provided else-
where [47, 48].

3. Material generation procedures

Both one- and two-phase materials were created in order to study amorphous polymers as
well as those containing a rigid reinforcement (such as PLCs). In both cases, the amorphous
phase consists of coiled chains that exhibit a certain molecular weight distribution. Although
the coiled chains can be created with a preferential orientation (or even complete alignment
with a specified direction), that feature was not used in these simulations. Thus, the resulting
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amorphous phases are always randomly oriented. In the case of PLCs, the rigid LC phase is
added to the flexible matrix after the generation of the coiled chains.

The approach followed to generate the amorphous phase is based on a procedure developed
by Mom [58] and later modified to exhibit more realistic features [59]. This approach can be
used to create both completely filled lattices and those containing vacancies. In the beginning of
the procedure, a hexagonal close packed lattice is filled with segments at equidistant positions.
This lattice was chosen for reasons previously discussed [46, 59]. In particular, it has a more
realistic coordination number than for instance the simple cubic lattice. Each of the statistical
segments represents a piece of a polymeric chain, as discussed in section 2.

Before chain growth, each individual segment in the material constitutes a chain of
length, l. The system is then searched for neighbouring segments that are available for bonding.
In the early stages of the procedure, many pairs of segments will fulfil this condition; in that
case, a statistical function determines which segments bond and, if one segment can bond to
any of several neighbours, which direction the bond should take. This procedure is repeated
and chains continue to grow by the bonding of neighbouring end-of-chain segments until no
more segments can be bonded in this way. Additional chain-growth procedures [59] were
developed to increase the average chain length and simultaneously introduce vacancies in the
material—an important feature for realistic representation of a polymeric material.

In the case of two-phase PLCs, the rigid LC phase was found experimentally to form
agglomerates of a quasi-spherical shape, called islands [60, 61]. For the generation of PLCs,
the flexible matrix is created first, after which the rigid second phase is added in the form of
islands. These are introduced by random sequential addition until the desired LC concentration
is obtained. A series of CGMs with different LC concentrations were created in order to study
the effect of this parameter on the behaviour and properties of the material.

It is important to maintain other parameters constant when investigating effects of the LC
concentration. However, due to the random nature of the material generation procedure, each
CGM exhibits a different amorphous chain structure. Also, the placement of the LC islands
on two-phase PLCs results in random island spatial distributions. Thus, it was necessary to
prevent effects caused by changes in these two parameters, as they have been shown to affect
the mechanical response [49, 62]. This was achieved by creating a CGM with the highest
desired LC concentration and then using it as a template for the creation of lower concentration
materials by random removal of islands.

A detailed description of the material generation procedure has been provided
elsewhere [59]. An example of a CGM within a cell containing approximately 1800 statistical
segments is shown in figure 1(a). As mentioned before, the lattice is used only to position
the segments and create the initial chain configuration; the simulations were carried out in
continuous space.

4. Effect of the loading conditions

The properties of polymers depend on the imposed loading mode and experimental variables,
particularly the strain rate. The strain rate-dependent viscoelastic phenomena exhibited by
polymers are mostly due to the molecular motions required for deformation. A common
problem is the material embrittlement at high loading rates (such as impact). The dependence
of the tensile properties on the strain rate has been observed by several authors [63, 64]. To
verify this dependence, a series of simulations were performed with varying conditions.

Since the simulations discussed here are not strain-rate controlled but force–rate controlled,
the force increase rate, Ḟ , is the variable that determines the loading conditions. In these
simulations the force increases at a constant rate up to a maximum value and subsequently
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Figure 2. Different force increase rates, Ḟ , used for simulation. Here t is the number of simulation
steps and F is the force.

decreases at the same rate. The maximum force value was chosen to induce a significant
amount of plastic deformation in the material before the force starts decreasing.

4.1. Loading rate

A single-phase material containing approximately 1800 statistical segments was tested as well
as materials of the same dimensions but containing 20% and 30% LC concentration. The
results for two-phase materials are discussed in section 4.3. Force increase rates, Ḟ , used for
simulation vary between 0.005 and 0.1, as shown in figure 2.

It is clear from figure 2 that in most cases the force returns to zero without the material
being fractured. However, for slower rates, the material fractures while the value of the force
decreases. Two reasons are proposed for explaining this behaviour: (i) slower rates allow more
time for molecular deformation mechanisms to develop and (ii) high values of the force are
applied for an extended time in slower rates. Fracture can occur during the force decrease
stage if the force is still high enough to induce deformation, particularly if the material has
already been extensively deformed.

The integral of the force–time curve (IF–t ) can be calculated as the area beneath the curve
up to the peak:

IF–t =
∫ tmax

0
F dt (4)

Here tmax corresponds to the time at which the highest external force was applied. The value
of IF–t is a measure of the amount of energy provided to the material for deformation. From
the analysis of figure 2, the critical Ḟ that results in fracture can be determined. IF–t can then
be plotted as a function of Ḟ and the critical rate pinpointed. This is shown in figure 3.

In the case of this material, the critical Ḟ is 0.0115. Any slower rates will result in
fracture before the force returns to zero. Note that the critical rate was found by an iterative
process, performing simulations between conditions that cause fracture and those that do not.
Obviously, this process could continue by performing another simulation for instance with
Ḟ = 0.011 75; however, increased precision in the critical rate would not provide new relevant
information.
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Figure 3. Force–time integral IF–t for the different force increase rates Ḟ .

Figure 4. Effect of the force increase rate Ḟ on the secant modulus Esec of the material.

The material stiffness behaviour was also investigated for different values of Ḟ . The
modulus has been calculated using two different methods: (i) the apparent modulus (Eapp)

is determined from the slope of the initial linear region of the stress–strain curve and (ii) the
secant modulus (Esec) is determined from the slope of the line connecting the origin to the point
on the stress–strain curve at the strain of 0.1. Since Eapp and Esec behave similarly, the results
presented are based on the secant modulus; see figure 4. Although there is some scatter, the
clear tendency is for the modulus to increase with an increasing Ḟ , confirming experimental
evidence of increased rigidity for higher loading rates.

The material also exhibits different strain behaviour for different loading conditions.
Figure 5 clearly distinguishes between rates that result in fracture and those for which recovery
is observed. Since many force increase rates were simulated, simultaneously representing all
of them significantly reduces legibility of the plots. Thus, several of the figures shown in this
paper represent only selected values of Ḟ .

Results show that the higher the rate, the lower the maximum value of the strain. In
addition, the strain maximum occurs sooner. This would be expected, since the force was
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Figure 5. Effect of the force increase rate Ḟ on the strain ε. Here t is the number of simulation
steps.

Figure 6. Engineering stress σn versus strain ε (left axis, full lines) and true stress σt versus strain ε

(right axis, dashed lines) behaviour for different force increase rates Ḟ .

applied for a shorter period. However, the curves for different Ḟ that do not cause fracture
are similar in shape. This confirms that the molecular phenomena involved in the different
simulations are the same, occurring only at different time frames.

The engineering stress versus strain curves are similar to those of force versus time up to
the maximum force values; see figure 6. The viscoelastic recovery in time can also be seen
in these stress–strain curves. However, the true stress curves provide important information
that the engineering stress curves do not. Figure 6 clearly shows how the maximum true stress
level varies significantly for the different Ḟ values. Also, the true stress keeps increasing even
after the force starts to decrease. Clearly the force is still sufficient to induce deformation,
thus changing the cross-sectional area. For the rate of 0.01, it seems from figure 6 that the
true stress was starting to decrease at a point, since the applied force had been significantly
reduced; however, the material still fractured.

The force increase rates that do not result in fracture exhibit lower maximum true stress
values occurring at lower strains. This is due to the fact that at these higher rates the cross-
section does not have time to change significantly. The true stress curves also display a higher
slope for higher Ḟ . Thus, if these curves had been used to calculate the modulus, the results
would be similar to those represented in figure 4 for the engineering stress.
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Figure 7. Time shift between the stress σn and strain ε peaks. Here t is the number of simulation
steps.

Figure 8. Relative peak shift δ for different force increase rates Ḟ .

4.2. Time-dependent response

There is always a lag between the applied load and the strain response in viscoelastic materials.
In dynamic mechanical analysis (DMA) this results in a shift between the stress and strain
curves called the phase angle [65, 66]. In the simulations, although no oscillating force was
used, a lag also appears in the strain response when the force is applied for some time and then
removed; see figure 7. The CGM used here is the same as considered in section 4.1.

That lag can be quantified as the relative shift, δ, between the peaks, δ = (tε − tσ )/tε.
Here, tε and tσ are, respectively, the times at which the maximum strain peak and the maximum
stress peak occur. A shift value of zero implies an ideally elastic material whereas a value of
0.5 would correspond to an ideally viscous (liquid-like) material.

The shift of the engineering stress and strain curves has been calculated for each force
increase rate from figure 2. As shown in figure 8, the shift for this material seems to oscillate
around a high value for low Ḟ and then decreases significantly for higher Ḟ . The line marked
in figure 8 has two linear regions. The first region at low Ḟ is the average value of δ for the
first five points. The second region is a linear regression for the last four points. This line was
drawn for easy visualization of the trend.
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Figure 9. Relative peak shift δ for the simulated materials at different force increase rates Ḟ .

The force increase rate is directly related to the extent of deformation, as noted above.
Higher rates result in lower deformation, since the force is applied for a much shorter period.
Thus, it is reasonable to expect lower δ values or a more elastic behaviour. For lower Ḟ , there is
large-scale plastic deformation, resulting in higher δ; again see figure 8. For rates below 0.05,
the shift seems to stabilize around 0.44. Therefore, deformation at low Ḟ is indeed dominated
by the viscous component of the material. At high Ḟ , the elastic component dominates.

To verify if the shift is independent of the material structure, similar simulations have been
performed on another single-phase CGM of randomly oriented chains as well as a two-phase
CGM with 30% LC concentration. The results for the three materials are comparatively shown
in figure 9.

Although there is some scatter, the behaviour seen for the first material is similar for the
other two materials. In fact, for Ḟ above 0.06, both single-phase materials exhibit exactly the
same shift. The two-phase material exhibits overall lower δ values, since the reinforcement
makes the material more rigid and simultaneously more elastic. Equal shift values were
observed for the three materials at the highest Ḟ , although this effect may be partially due to
a very small number of points in the stress and strain curves.

4.3. Second phase concentration

The effect of the force increase rate was investigated in two-phase materials with 20% and
30% LC concentration. This provides an opportunity to study the effect of the second phase
concentration on the mechanical properties. The behaviour is similar to that described in
section 4.1 for a single-phase material. However, there are differences due to the presence of
the LC islands.

The apparent modulus was calculated and compared with the case of the single-phase
material; see figure 10. As could be expected from previous arguments, the presence of the
LC phase increases the modulus of the material. The tendency of the modulus to increase
with increasing Ḟ is also observed for the two-phase systems. However, it seems that Ḟ has a
higher effect on the modulus than the presence of the second phase, at least in the range of the
LC concentrations studied.

The presence of the second phase also influences the strain behaviour. The two-phase
materials exhibit delayed response to the applied force since the LC reinforcement increases
the rigidity; see figure 11. Thus, for higher LC concentrations, the same strain levels take a
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Figure 10. Effect of the LC concentration on the apparent modulus Eapp of the simulated materials
at different force increase rates Ḟ .

Figure 11. Effect of the LC concentration on the strain ε at the force increase rate of 0.005. Here,
t is the number of simulation steps.

longer time to reach. This is equivalent to saying the same strains occur at higher values of
the force. Although the curves are displaced in time, their shapes are very similar.

The evolution of engineering and true stress levels during deformation has also been
compared. These are shown in figure 12 for a material that is allowed to recover without
fracture. Although the two plots look similar, several important differences should be noted.
The stress magnitude is quite different; the maximum σt is almost twice the maximum σn.
This demonstrates the importance of measuring the cross-sectional area for obtaining accurate
stress information. The geometry of these specimens is quite simple. For complex geometries,
the difference between σn and σt might be even more drastic. The true stress curves are also
slightly slanted compared with the engineering stress curves. These results again show a minor
time shift between σn and σt , due to the time-dependent phenomena accompanying changes
in the cross-section.

For all cases, the LC phase appears to decrease the strain at which the maximum stress
appears, and for σt the maximum stress value is also decreased. Thus, the LC islands are
performing their role as reinforcement.
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Figure 12. Engineering stress σn versus strain ε (left axis, full lines) and true stress σt versus
strain ε (right axis, dashed lines) at the force increase rate Ḟ of 0.04.

Figure 13. Different creep force patterns used for simulation and the respective strain behaviour
of the material for each. Here t is the number of simulation steps, Fc is the creep force and ε is the
strain.

5. Creep behaviour

The behaviour of a CGM within a simulation cell containing approximately 1800 statistical
segments was simulated under different creep conditions. In section 5.1, the effect of the creep
force value on the mechanical response is discussed. In section 5.2, the creep force value was
kept constant while the duration of its application was varied. Some of the interesting features
observed in the results are discussed further in section 5.3.

5.1. Effects of creep force variation

A constant creep force was applied for 10 simulation steps in each case and then removed.
The force application patterns are shown in figure 13. An intermediate step where the force
is half the maximum value was introduced between the force of zero and the creep force. As
shown in figure 13, at the highest creep force the material fractures after 7 simulation steps.
In other cases, the material exhibits partial viscoelastic recovery with time.
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Figure 14. Bond conformation changes (left axis, full lines) and true stress σt versus strain ε

behaviour (right axis, dashed lines) for varying creep force levels. Here, Fc is the creep force, fc is
the fraction of bonds that have undergone conformational change and ε is the strain.

The strain response in time for each of the force application patterns is also shown in
figure 13. For the case of the highest force, the strain increases continuously until fracture
occurs. When the force is removed and the material recovers, the behaviour is similar for
different force values. However, the strain increases more rapidly for higher force values, as
could be expected. Also, higher force values will cause higher maximum strain values. Even
at the lowest creep force simulated, the viscoelastic nature of these materials is evident. The
creep seen as a continuous increase of the strain at a constant force value reflects the time
dependence of the deformation mechanisms.

The simulation model employed allows for short and long bonds, such as those present
as cis and trans in carbonic chains. The differences in the strain response at varying creep
forces indicate that different deformation mechanisms are taking place. This can be verified
by plotting the fraction of flexible bonds in the long conformation state, fc, for different
conditions; see figure 14. Clearly, the value of fc provides a measure of the extent of bond
conformation changes that the material has undergone.

Thus, the strain increases more rapidly for higher creep force levels. However, that
is not due to more bonds undergoing conformational changes. In fact, the force of 0.5
corresponds to the highest strain but results in a much lower number of bonds in the long
state than at the other force levels. This implies that other deformation mechanisms are
predominant for higher force values. As discussed in more detail in section 5.2, higher
forces tend to rapidly cause chain unfolding and chain separation near the edges of the
material, while the bulk material is still mostly unchanged. Since fc is very similar
for the lower force values, there might be a critical creep force value that induces this
effect.

The true stress (σt) profile also varies for different conditions. As shown in figure 14,
although applied for the same period of time, higher forces correspond to higher deformations.
It could be expected that higher values of the force would result in proportionately higher
true stress values. However, the maximum value of the true stress for the force of 0.2 is
approximately four times larger than that for the force = 0.1. This implies that the cross-
section is also changing more significantly for the higher creep force. Thus, the combined
effect of the increased external force and the reduced cross-section causes the true stress to
reach higher values than expected. In the case of the highest creep force, the true stress was
still increasing when fracture occurred.
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Figure 15. Different creep time patterns at creep force Fc = 0.1 (left axis, full lines) and the
respective strain behaviour of the material for each (right axis, dashed lines). Here t is the number
of simulation steps, tc is the creep time and ε is the strain.

5.2. Stress imposition time effects

For each level of the creep force described in section 5.1, the creep time, tc, of the simulation was
varied between 2 and 20 simulation steps. Following the argument from the previous section
that the molecular phenomena responsible for deformation mechanisms are time dependent,
these simulations should exhibit significant differences. A few selected force application
patterns for the force level of 0.1 are represented in figure 15.

The strain response in time is also shown in figure 15. The simulation with creep time
tc = 2 exhibits only small-scale deformation; when the force is removed, recovery to a state
very close to the original shape occurs. In the other simulations with higher creep times, there
is large-scale deformation. Thus, the material does not recover to the initial shape; instead,
when it recovers, it tends to buckle.

The shape of the curves for tc = 10 and tc = 20 is similar, all involving large-scale
deformation and subsequent recovery. As expected, the maximum value of the strain is higher
for longer times of creep force application. An interesting feature of the plot is that the curves
have very similar shape in the initial overlapping region. This would be expected, since it is
the same material under the same loading conditions.

Related features can be seen in the stress–strain diagram; see figure 16. The shape
of the curves in the overlapping region is very similar. The maximum true stress in the
material increases for increased creep time—which implies a continuous decrease of the cross-
sectional area.

The strain response for the force level of 0.2 is shown in figure 17. The main difference
with respect to the force level of 0.1 is the fracture of the material after 20 simulation steps at
the creep force. The shape of all curves in this figure is identical in the overlapping region, as
seen before for the lower force level.

5.3. Strain behaviour

Based on the results for the different creep forces applied for varying tc, some very interesting
properties of this material can be established. As shown in figure 18, the strain after only
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Figure 16. True stress versus strain behaviour for varying creep time at creep force Fc = 0.1.
Here tc is the creep time, σt is the true stress and ε is the strain.

Figure 17. Effect of the creep time on the strain behaviour of the material at creep force Fc = 0.2.
Here t is the number of simulation steps, tc is the creep time and ε is the strain.

2 simulation steps at a force of 0.5 is equal to the strain after 5 simulation steps at a lower force
of 0.2. The same is observed for the strain after 10 simulation steps at a force of 0.2 and after
20 simulation steps at a force of 0.1.

However, even though they exhibit similar maximum strain, the deformation mechanisms
are not the same; apparently, the changes in geometry during deformation are different for each
case. Figures 19(a) and (b) represent the material structure at the last time step of creep force,
immediately before the force starts decreasing for the cases of tc = 10 at a force F = 0.2 and
tc = 20 at a force F = 0.1, respectively.

The lower force applied for an extended period of time results in a more homogeneous
deformation throughout the material, with most chains having unfolded and extended along the
force application direction. For the higher force, which is sufficient to break weak secondary
forces, the chains near the edges can unfold rapidly and start extending significantly while
the inner material has not yet shown deformation. In this case, the final structure geometry
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Figure 18. Strain behaviour under varying conditions of creep force and time. Here t is the number
of simulation steps, tc is the creep time, Fc is the creep force and ε is the strain.

Figure 19. (a) Structure of the material before force removal for the case of tc = 10 at a force
F = 0.2; (b) structure of the material before force removal for the case of tc = 20 at a force
F = 0.1. Light spheres represent the flexible segments that constitute the amorphous chains, while
dark spheres represent rigid segments which are placed at both edges along the x-axis to prevent
chain pullout due to the direct force application on these segments.

indicates that if the force had not been removed at that particular moment, fracture would occur
rapidly. This does not appear to be the case for the lower creep force.

The different deformation mechanisms which have developed in these two cases are
reflected in the number of bonds undergoing conformation change; see figure 20. The three
creep loading conditions result in similar strain level before force removal. However, higher
force results in a lower number of bond conformation changes. Simultaneously, higher force
results in a much more localized deformation. This is in agreement with what was argued
above regarding the different deformation mechanisms taking place in the material. Strain
for higher force values results more from chain separation, even causing cracks to develop
at relatively low strain values due to chain pullout. In contrast, lower force values allow the
external force to be better distributed through the material, resulting in more chain unfolding
accompanied by bond conformation changes.
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Figure 20. Effect of the creep loading conditions on the bond conformation changes. Here tc is the
creep time, Fc is the creep force, fc is the fraction of bonds that have undergone conformational
change and ε is the strain.

Thus, each of the competing deformation mechanisms observed in the simulations, such
as chain unfolding and chain separation, has its own time dependence.

6. Concluding remarks

The loading conditions were found to greatly influence the mechanical properties. As Ḟ

increases, the material becomes stiffer, more brittle and, as can be expected, lower values
of the strain at break are found. In terms of the viscoelastic behaviour, for relatively low Ḟ ,
deformation is dominated by the viscous component of the material. As Ḟ increases, the elastic
component becomes predominant.

The simulations have also shown that when a constant tensile force is applied to a
CGM comprising amorphous macromolecular chains, the material response depends on the
magnitude of the force as well as the time during which it is applied. The magnitude of the
force and the time span of force application also affect the extent of viscoelastic recovery after
the removal of an applied creep force. However, the rate of recovery exhibits a much smaller
dependence on these factors. Previously, the influence of the morphology of the material on
its properties had also been demonstrated [51, 52].

These observations are closely related with the competing deformation mechanisms taking
place during tensile deformation of the material. The results presented in this paper, particularly
sections 4.1, 5.1 and 5.3, confirm that the loading conditions determine the predominant
mechanism(s) taking place, as suggested before in [51]. If the deformation is slow, substantial
chain unfolding and chain sliding occur. For faster deformation rates, some chain unfolding
still takes place, but bond conformation change and bond rupture are quickly observed. In
addition, at slower rates the deformation is rather uniform throughout the material, while at
faster rates it is more localized. The same conclusion has been reached experimentally for
polypropylene by an Austrian–Swiss group [67]. Because of this, fast rates will often lead to
fracture near the edges.

At higher creep force values, deformation results mostly from chain separation and crack
formation and propagation, with cracks appearing even at relatively low strain values. In
contrast, at lower force values, deformation is more homogeneous, resulting mostly from
chain unfolding and bond conformation changes. These effects can also be observed in the
true stress response, which increases more significantly for higher creep force values. Such
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behaviour is due to localized deformation, which reduces the cross-sectional area abruptly in
some regions.

True stress calculations have shown how the changes in cross-sectional area result in
stress levels much higher than those indicated by the engineering stress. In this way, a more
accurate measure of the conditions imposed on the material can be obtained. Moreover, since
the material often exhibits highly localized deformation, the true stress in a certain region can
increase substantially compared with the average value. In such cases, those regions become
probable loci for failure to occur.

The influence of the rigid LC second phase on the properties of the material is clearly
seen in section 4.3. Although the second phase increases the modulus of the material, thus
performing its role as reinforcement, it also reduces the ductility. This effect supports what
had been proposed from the results of tensile deformation up to fracture [49]. The loading
conditions were found to have a much stronger effect on the properties than the presence of
the second phase, at least within the studied range.

Information obtained through computer simulations provides a better understanding of
the molecular phenomena that take place during deformation of polymers, giving encouraging
property predictions. Nevertheless, the transition from the mesoscale to macroscopic behaviour
and properties requires additional work. It is important to note that caution is required when
comparing the simulation results presented here with macroscopic properties for two main
reasons: (i) the time-scale of MD simulations is several orders of magnitude below that of
experimental testing and (ii) the simulations were performed at a mesoscale, not taking into
account the formation of supra-molecular structures at the microscale, and considering a small
volume of material.
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