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ABSTRACT: Polymer liquid crystal (PLC) macromolecules consisting of LC and flexible sequences with 
varying composition 8 of LC segments are considered using the lattice approach of Flory:p8 with the orientational 
distribution function developed by Flory and R o n ~ a . ~ ~ ~  We obtain a partition function dependent on 8, on 
the average length of rigid sequence 4, on the order parameter s, and on temperature T. For 8 = 1 the 
equations reduce to the case of fully rigid rods treated before by Flory and collaborators. A drastic change 
in the slope of s vs f i  curve is observed around 8 = 0.2, indicating a large increase in the chain alignment. 
A prediction of TLC-I in function of 8 for a given 4 value is shown. LC-rich phases are formed for 8 > 8Lc limit; 
that limit is discussed in reIation to earlier work by Flory and Matheson, experimental evidence, and the 
present results. 

1. Introduction and Scope 
We need first to sort out liquid-crystalline materials as 

a function of their relative molecular mass. Following 
Samulski,' we distinguish monomer liquid crystals 
(MLCs)-irrespective of whether these monomers can be 
polymerized-and polymer liquid crystals (PLCs). Since 
we are in the second century of studies of MLCs, we know 
much more about them. PLCs constitute a very active 
area of re~earch.~-~ However, we know much less than we 
would like to about their phase structures and phase 
transformations-the subject of the present paper. We 
shall now characterize briefly available theoretical ap- 
proaches and experimental information and, on this basis, 
define the scope of this paper. 

A theoretical approach developed by Flory5 in 1956 still 
constitutes the basis for contemporary work. Flory's 
starting point was an experimental observation that the 
configurational dimensions of polymer molecules in dilute 
solutions are often about twice those assuming free rotation 
about all single bonds (the freely jointed or flexible chain 
model). Therefore, he argued, we have in such cases 
semiflexible (or, equivalently, semirigid) chain molecules. 
Flory developed an ingenious procedure6 for placing rigid 
molecules on a lattice, thus taking advantage of the lattice 
model that he and also Guggenheim' used so well. The 
procedure is based on dividing a rigid chain into submol- 
ecules joined together in such a way that the molecule as 
a whole is oriented a t  an angle # 0 with respect to the 
horizontal (or vertical) lattice orientation; we shall also 
use this device (see eq 6 below). 

When more than 20 years later rigid molecules became 
a focus of attention, this also because of rigidity exhibited 
by PLCs, Flory and collaboratores applied and extended 
this approach8-lg to deal with the statistical mechanics of 
a number of specific cases: again rods in solution,8 but 
now also taking into account orientation-dependent in- 
teraction~;~ polydisperse rods and quasi-spherical (solvent) 
molecules;1° rods with two different axial ratios and 
so1vent;ll rods connected by flexible joints plus s01vent.l~ 
For PLCs, which mostly consist of rigid and flexible 
sequences of segments, one can use the treatment of such 
macromolecules by Matheson and Flory.16 
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Typically one assumes in the lattice model that a 
segment has a length equal to its diameter, which makes 
possible placement a t  agiven lattice site of either a polymer 
segment or a solvent molecule. Flory has used this device 
also. However, one can also assume a width of a segment 
larger than 1; this has been done for rigid sequences by 
Gallenkamp.20 However, Gallenkamp considered not only 
rigid rods but also rigid stars, that is, stiff sequences 
perpendicular to one another and meeting at  a certain 
segment. He had to introduce a second order parameter 
but achieved a three-dimensional description of the system. 
We know that there is a class of star-shaped PLC molecules 
and that the properties of PLCs are strongly dependent 
on the class, that is, on the molecular ~ h a p e . ~ ? ~  Moreover, 
computer simulations of PLC systems by the method of 
molecular dynamics show that mechanical properties are 
defined by the spatial distribution of rigid units in each 
system.21-22 

Finally, we need to mention experimental work on the 
ternary system of the type PLC + flexible polymer + 
solvent.23 As expected, an attempt to use the theory of 
Flory for the rigid rods + flexible chains + solvent system 
did not produce satisfactory results, since most PLCs 
including the one studied are only partly rigid (there are 
a certain number of fully rigid macromolecules, with low 
solubility and virtually inaccessible melting points, but 
interesting for other reasons2*). This situation was the 
prime motivation for our work. In the present paper we 
study the PLC systems, that is, copolymers with varying 
fraction 8 of rigid sequences. 

2. Derivation of Equations 

Our system consists of N p  copolymer chains, each of 
which is made up of flexible (coillike) and liquid-crystalline 
(rodlike) sequences in alternating order. Each copolymer 
is supposed to consist of r segments, rc of which belong to 
flexible sequences, and ri, to rigid sequences. Thus, r is 
equal to the degree of polymerization. A fiied Composition 
8 is defined as the fraction of rigid segments which 
constitute the rodlike sequences; that is, 0 = d r .  The 
copolymers may differ from each other in three respects: 
(a) the number of sequences (n of each type) in a copolymer 
chain; (b) their length distribution (let ?h denote the 
average length of a rodlike sequence); (c) the relative 
position 1 of a sequence in the copolymer chain. We shall 
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denote these attributes In, 7, Z] simply by ([I, so that Nlcl 
represents the number of copolymers with identical 
attributes {[I. Clearly, the parameters just defined are 
related by r = rc + rt, = n(qc + Vh), where 7, is the average 
length of a flexible sequence in each chain. We shall make 
the following assumptions: (a) each segment (either in 
coil- or rodlike sequence) is of the same size as a cell in 
the cubic lattice-an assumption used often by Flory; (b) 
interactions between copolymers are through anistropic 
forces between the rigid segments; only those pairs of 
segments that are first neighbors are considered; (c) there 
are no vacancies in the cubic lattice; that is, the number 
N of lattice sites is the same as the total number N = rN, 
of segments in our system. 

We can now write the partition function Z of our systems: 
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a standard approximation in the literature; here Zcomb is 
the combinatorial or “steric” contribution; Zorient arises 
from the various orientations of the rigid sequences as 
well as the anisotropic interactions between their segments. 
Explicitly, we have 

where uj  is the expected number of sites available for the 
j th  copolymer molecule after j - 1 PLC molecules have 
been placed on a lattice and qc is the internal partition 
function for each of Npr, flexible segments relative to qh 
for the rodlike segment, which is set to unity. The factorial 
factors in the denominator ensure that configurations 
arising from permutations within a set of Ngl identical 
copolymers are not counted. 

We now derive the expression for uj ;  this may be written 
as a product of factors as follows: 

(3) 

where vCj(‘) denotes the expected number of sites available 
for the lth flexible sequence in the jthchain, after segments 
belonging to the preceding sequences have been placed; 

has analogous significance for the mth rodlike 
sequence in the chain; Z ranges over odd integers, and m 
over even integers. Expression 3 assumes that the initial 
sequence in the chain to be placed is a flexible one. For 
the case of a rodlike initial sequence, we would have 

where 1 and m again range over odd and even integers, 
respectively. Obviously, (3) and (3a) should yield the same 
result. 

If z is used to denote the coordinate number of the lattice, 
for U c j ( l )  we can, to a good approximation, write 

assuming that this sequence contains m, segments. The 
first factor in (4) gives the number of vacant lattice sites 
available for the first segment; the second factor is the 
expected number of neighboring lattice sites available for 
the second segment; each of the last m, - 2 factors, gives 
the corresponding expected number of neighboring lattice 
sites available for the remaining m, - 2 segments. 

For the Zth flexible sequence in the j th  PLC chain 
containing m,(l) segments 

(5) 

N,,, = N - r(i - 1) - - Cm.(‘) (5a) 
i 

Each of the m,“) factors in (5) gives the expected number 
of sites available for the first and succeeding segments of 
the constrained lth sequence (I # 1); Nv,, gives the number 
of vacant lattice sites, after all segments belonging to 
preceding sequences in the j th  chain have been placed. 
Obviously, we can to a good degree of approximation write 

N,,, = N - r(i - 1) (5b) 
To write down an expression for Vhj”), 1 # 1, for the Ith 
rigid sequence, we follow Flory619 and replace this by yf” 
contiguous submolecules, each of length mh(”/yfl) and 
aligned parallel to the director axis; yf’) also serves as a 
measure of the deviation of the rigid sequence from the 
director axis. Figure 1, modeled after refs 6,8, and 10 and 
in particular after ref 16, shows how this can be accom- 
plished. This procedure of dividing the rigid sequence 
into submolecules makes the sequence conformable to the 
lattice. In fact, Figure 1 shows additionally how aflexible 
sequence (the third from the left) can also be represented 
by an analogous procedure. Adopting the reasoning of 
Flory, we have 

where 
i-1 

P = N,,J N (6b) 

Pcond denotes the conditional probability that a site 
following one (in the direction of the director axis) known 
to be vacant is vacant. Since accessibility of the sites 
required for a segment, other than the first in each 
submolecule, is contingent upon the vacancy of the 
preceding site, Pcond gives the probability for the avail- 
ability of sites for segments following the first in each 
submolecule; there are yj”) (mh(’)/yf’) - 1) such segments; 
hence the presence of this exponent in the second factor 
of (6). P simply gives the a priori probability for the 
availability of a site for the first segment in each sub- 
molecule following the first; there are yfl) - 1 such 
submolecules; hence the presence of this exponent in the 
last factor in (6). The first factor in (6) gives the expected 
number of sites for the first segment in the first submol- 
ecule of the rigid sequence. Together, the product of these 
three factors in (6) gives the expected number of sites 
which conform to the constrained rigid sequence, char- 
acterized by the disorder parameter yj(”. 

Using (4-6) in (3), we now obtain 
j-1 

z(z - ~)‘J-’(N - x r i P  
L 

vj = (7) 
i-1 

where 

yi = Tyt” 
1 ranges over all rigid sequences in the j th  copolymer 
molecule. 



78 Jonah et al. Macromolecules, Vol. 26, No. 1, 1993 

second sum, where 

we have 
N" 

...................................................................... > 

Figure 1. A four-sequence part of the jth chain (top) and its 
lattice representation (bottom). The third sequence from the 
left is flexible; the remaining ones are liquid crystalline. The 
first sequence from the left consists of six submolecules, so that 
yj(" = 6. As noted in the text, the higher a local y value, the 
larger the deviation of a given sequence from the LC director 
axis. Thus, since the fourth sequence from the left is parallel to 
the axis, and to the horizonal direction of the lattice, yf4) = 1. 

Director Axis 

Apart from the factors involving the coordination 
number z that appear in (7), presumably included in the 
internal partition function for the coillike segments, the 
remaining terms are the same as in the Matheson-Flory 
expression, eq 4 in ref 16. 

It  can be readily verified that eq 3a, which pertains to 
placing first a rigid sequence on the lattice, leads to an 
expression (7) identical to that obtained from (31, except 
that the leading factor z in (7) is replaced by z - 1. 

Assuming in our model a monodisperse system gives r, 
independent of j and simply equal to r; however, we have 
chosen to use rj instead of r in (7), in order to make 
comparison with the Matheson-Flory16 expression easier. 
Following their procedure, we shall now introduce certain 
averages in terms of which the sums in (7) may be 
expressed: 

f i  is the average over all the chains of the length of a rigid 
sequence; 9 is the average disorientation parameter for all 
rigid sequences. Since there are 8r segments belonging 
to the rigid sequences in each polymer chain, Brlij gives 
the average number of rigid sequences in a chain, and (8) 
is readily understood. In anticipation of computing In 
Zcomb, we consider 

NP 

B N p r y / i l - N p j l n N - 8 r ( l - 9 / ~ ) ~  ln(N-0 ' -  1)8r(l- 
I 

Y/$) + c (9) 

C = Np In z + ( r  - 2)Np in ( z  - 1) (9a) 
the sums over j can be approximated by their correspond- 
ing integrals; thus 

where 

W B  - (Np - 1)) In (1 - OWp - 1)) (10) 
Using B = l/Np for the first sum, and 0 = Q/Np for the 

2 in ui = Np l n N +  N +  r lnN, -NQ + 
i 

N(1- Q) In (1 - Q) + C (12) 
for Zorient we use the expression of Flory and Irvine:17 

where n, denotes the total number of rigid sequences which 
are of length 7, nqy is the number of these sequences 
characterized by the disorientation parameter y, wqY is the 
fractional range of solid angle (or a priori probability) for 
the interval of orientations corresponding to y,.and e,y is 
the mean orientation-dependent energy experienced by 
one of the segments of the rigid sequence of length Q, in 
the field of its neighbors. 

The equilibrium value of the distribution n,/n, can be 
obtained by noting that this is proportional to the product 
uyquyr (the number of configurations available to a rodlike 
sequence of length rl and disorientation parameter y) and 
the Boltzmann factor associated with the energy state of 
the sequence. Thus 

where we have displayed the dependence of try on the 
angular deviation $,, of the sequence from the director 
axis. To write out uqy explicitly, we consider the expected 
number of situations for the last rigid sequence (in the 
last copolymer) placed on the lattice; this is obtained from 
(6) by writing Uhj'l), for j = Np and 1 for the last sequence. 
Thus we have 

(15) 

and we see that Uh,N ( l )  is proportional to some function of 
the sequence lengtk, and its disorientation. Obviously, 
(15) can be taken as applicable to any rigid sequence in 
our system. Thus, using generic notation y Yj") and 9 
= ?nh('), we have for uqY the relation 

(16) 

(1) = (z  - 1)Np-mh(l)(l - Q)Yj(l)-mh(l) 
'hflp 

uqy - exp(-ay - b d  
where 

a = -In (1 -8) b = l nNp-a  
Let us assume the length of rigid sequences as the same 
or sharply distributed around some mean value ij. We 
shall discuss consequences of this assumption in section 
5. Now we can simply rewrite (16) in the form 

vy - exp(-ay) (16a) 
and we have for the equilibrium distribution of orientations 

nqy/nq - uqy exp{-w - ficvY(+,)ikTj (17) 
For a more explicit expression, we make use of the following 
relations: 

& 
dY 

uqy = sin + 
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per molecde A, using (11, (2) with Nt = Np, (12), and (26) where the order parameter s is defined by 

(184 3 s = 1-2  (sin2 J,) 

(( ) denoting an average over orientations) and P is a 
characteristic temperature defined by 

k P  = const.r*4(A@)2 (lab) 
r* is the distance between neighboring segments in contact 
and Ab the difference between the polarizabilities along 
and normal to the cylindrical axis of a rigid segment. 

Use of the fact that 

yields an expression for n,,/n,: 

1 fl = sin J, exp -ay -I&&' 3 i sin2 J, dJ, (19) 

where pis the reduced temperature defined by Tfip T / s P .  
f#Jh is the volume fraction of liquid-crystalline (rigid) 
sequences in the system. In the present case of pure 
copolymers, f#Jh = e, but we introduce in anticipation 
of dealing with binary and ternary systems in a later paper. 
In order for (19) to be useful, we need to know y as a 
function of J,. Flory and Ronca8 derived the relation 

9 = (4/r)i j  sin J, (20) 
Kloczkowski, Mark, and ErmanZ5 derived a more 

accurate but more complex relation that produces some- 
what larger values for the ratio 9/ij. For biphasic equi- 
librium the differences between their values and those 
from eq 20 are small and stay nearly constant with respect 
to i j ,  and the conclusion is reachedz5 that the use of (20) 
is "fully justified". Upon adopting (20), we obtain the 
following equilibrium distribution of orientations: 

y = 4aij/lr (22) 

We now have for the orientational contribution to the 
partition function: 

But 

where 

(24) 

Using (21) and (24) in (23), together with the assumption 
of constant q, we obtain 

lnZOrient=n,(lnfl+y (sin+) +9hsF1(l-s/2)) (25) 

We may now write for the reduced Helmholtz function 

(6,) = -kT*&s(l-s 3 (sin2 +)) 

A(NpkT)-' = - N i l &  Zcomb + In Zorient) = In ; 1 + 

r((1- - (1 - Q) In (1 - Q )  - Q - (1 - Q) ~n qc) - 
nii 
--(In fl + y (sin J , )  + f # J h S p l ( l  - 8/21) (26) 
NP 

In writing (26) use has been made of the Stirling approx- 
imation in the form In Np! = Np In Np - Np. For an isotropic 
phase, s = 0 , ~  = ii, so that Q = 0, and f 1 =  1. Thus, writing 
(26) for the isotropic phase, and wing the relation 

Amis = Ai80 

which describes equilibrium between an isotropic and an 
anistropic phase, we arrive at the key equation of this 
paper: 

ij(1- e) In (1 - Q)  + i jQ + 8{1n f l  + 8 s p 1 ( l  - s/2)) = 0 
(27) 

where Q has been defined by (111, while 

3 f i  = f' sini J, exp -7 sin J, - ppl sin' $ ( 
0' = 1,2,3) (27b) 

4ij 
In (1 - 8) y = - -  

lr 

We observe that, in the special case of 8 = 1, when the 
copolymers reduce to rigid rods of length i j ,  eq 27 reduces 
(as it should) to the Flory-Ronca equation8 for biphasic 
(isotropic-LC) equilibrium for a neat liquid of rodlike 
polymers. 

3. Application Range of the Model 
A natural question at  this stage is, when is the foregoing 

set of equations applicable? We have assumed partial 
rigidity of macromolecular chains, but we have not assumed 
any particular structure of the mesogenic phase. There 
is a variety of LC-phase structures, including nematic, 
cholesteric, and several smectic (see, for instance, section 
6.10 in ref 26); both MLCs and PLCs can form such phases. 
Typically, lowering the temperature produces a more 
complex LC phase, but we also have reentrant nematic 
p h a s e ~ , 2 ~ - ~  with a more ordered phase such as a smectic 
one in the middle of the phase diagram. Our equation for 
the biphasic equilibrium describes the situation at  the 
clearing temperature. Flory took the same position: we 
have anisotropic-isotropic equilibrium, but the theory does 
not deal with details of the anisotropic structure. This 
fact is important, because one still often assumes, nearly 
automatically, that the anisotropic phase at the clearing 
temperature is nematic. Yoon and his  colleague^^*^^ 
studied a LC homopolymer, namely, poly@-hydroxyben- 
zoic acid) (PHB), by a variety of techniques. They found 
successive transitions crystal-smectic Ehmectic B, but 
no nematic phase. 

We have assumed that the rigid and the flexible segment 
sequences alternate along the chain. The question here 
is to what extent real PLC chains fulfill this assumption. 
Nicely and  collaborator^^^ studied by nuclear magnetic 
resonance (NMR) spectroscopy copolymers of poly(eth- 
ylene terephthalate) (PET) with PHB. They found that 
there is a slight preference factor, 1.3, for the two LC 
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sequences adjacent to each other; no such adjacency results 
in the factor of 1.0. In our synthesis33 we could not exceed 
the preference factor of 1.3 either. However, because of 
the transesterification reactions in the melt, the small- 
angle neutron scattering study of O l b r i ~ h ~ ~  has shown that 
the values of ii can be as high as 13.2. 

In comparison to fully flexible polymers, the presence 
of rigid mesogenic units in the chain elevates the melting 
temperature, T,. Hence PLCs have typically higher Tm 
values than flexible polymers, and of course the clearing 
temperatures are still higher, sometimes in the region of 
thermal decomposition. An advantage of the present 
theory would be the capability to predict a part of the 
phase diagram which is hard to determine experimentally. 

4. Numerical Investigation 
Experimentally, one can take a series of PLC copolymers 

consisting of the same structural units, say flexible A and 
liquid-crystalline B, and determine the phase transitions 
in each copolymer. In other words, one then defines the 
temperature vs composition phase diagram in function of 
8 for a series of Al.+Be polymer liquid crystals. Similarly, 
in our computations, with other parameters constant, a 
PLC chain is fully defined by fixing a value of 8. The 
chains we consider are snakes-using the terminology of 
the graph theory-since they have no branches. We 
consider longitudinal PLCs214-a class of PLCs in which 
the mesogenic units are aligned along the chain backbone. 
Let us first observe that, for a specified 8 and known 
properties of the rodlike segments, each f, is a function of 
y, s, f j  and 7; that is 

t; = f,(T,s,ii,T;e) (28) 
From (20) and using (21) we can write 

4 f2  

i l *  7r f l  
(sin$) = -- y - 4  - - -  

so that Q (see eq 27a) is a function of the same variables 
as f,. We may now represent the system of equations in 
(27), whose solutions we seek, as 

Gj(y,s,ij,F;e) = 0 = 1,2,3) 
where 

4ii G, = y + 71” (1 - 8) 

Since eqs 30 constitute a system of three nonlinear 
equations, one of the four variables y, s, 8, and T needs 
to be specified. We have employed two algorithms in 
solving the system of eqs 30: one is the Flory-Ronca 
iteration scheme, which these authors used to solve the 
corresponding system for a neat liquid of rodlike polymers; 
the other makes use of the Newton-Raphson procedure. 
The Flory-Ronca algorithm chooses to specify y and solve 
fors, i j ,  and T (or pl). The procedure is based on guessing 
the product sp l ,  given values of 8 and y; with this 
information, fj can be evaluated. Equation 30b is then 
solved for i j ,  which makes possible the evaluation of GI. 
If the difference between the absolute value of GI and 
zero exceeds a certain tolerance, then s p l  is revised and 
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Figure 2. Dependence of the order parameter s on the average 
length tj of rigid sequences in the PLC chain for selected values 
of the composition 8 of LC segments. 

the iterative process continued until (30a) is satisfied, 
within a iven tolerance. In this way, we obtain values of 
fj,s, and b1 corresponding to values of y which had been 
assumed. 
As for using the Newton-Raphson algorithm, values of 

ij were assumed and the eqs 30 solved for 8,  y, and ‘?‘‘-I. 
That algorithm requires for its implementation the 
evaluation of elements of the Jacobian matrix for the 
system of eqs 30, and these are listed in the Appendix. Use 
was made of a slightly modified subroutine MNEWT (with 
its associated subroutines) which is provided by Press, 
Flannery, Teukolaky, and Vetterling.35 The use of the 
Newton-Raphson procedure is in principle quite straight- 
forward, provided the guessed values of the unknown 
vector are reasonably close to the required roota of the 
system of equations, within a given tolerance. For given 
values of two of the four variables ij, 8, y, and p, it was easy 
to obtain reasonable starting vectors for use with MNEW’T 
from the points of intersection of contours Gj = 0 0’ = 1, 
2, 3); another subroutine was used to generate these 
contours. 

The solutions obtained by both algorithms agree with 
each other, so that one serves as a check on the other. The 
use of the two algorithms was also found quite helpful, as 
it is fairly easy to miss certain solution seta or find incorrect 
solutions when only one algorithm is applied. The contour 
plots were crucial in recognition of the real solutions. 

5. Results and Discussion 
In Figure 2 we show the order parameters (see eq 18a) 

as a function of the average length i j  of rigid sequences for 
values of 8 at 0.1 intervals. We find that for 8 = 0.1 the 
order parameter increases quite slowly with the length of 
the rigid sequence. We also note that the slope for 8 = 
0.2 is much higher. Apparently, since percentagewise we 
have doubled the concentration of rigid sequences, much 
more alignment of the chaine takes place. The slopes for 
the values of 8 between 0.6 and 1 are fairly close. In other 
words, there is already so much alignment for 8 = 0.6 that 
a further increase in the concentration of LC sequences 
hardly affects the situation. 

It is instructive to compare Figure 4 of Matheson and 
Flory16 with our Figure 2. They had already demonstrated 
that the concentration of flexible segments -... that can be 
tolerated increases with I]”. Since that concentration is 
equal to 1 - 8, this is clearly confirmed by our Figure 2 
for, say, i j  = 30 we can have 8 = 0.2 but not 8 = 0.8. Our 
present treatment is simpler than that of Matheson and 
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Figure 3. Dependence of the order parameter s and the 
anisotropieisotropic transition temperature Tu.i/T+ on the LC 
compceition 8 for i j  = 2.5. 
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Figure 4. The same parameters as in Figure 3 but for i j  = 25.0. 

Flory since we deal with neat liquids only. At the same 
time, our approach is more complicated since we use a 
more exact form of Flory and Ronca for the orientational 
distribution function. Figure 2 provides for the Flory- 
Ronca model a detailed picture of the effects of varying 
the concentration of flexible (or rigid) segments. 

Our results in Figure 2 include the case of fully rigid 
rods, 8 = 1, already treated by Flory and R ~ n c a . ~  Their 
results and our coincide as they should. As can be seen 
in the figure, the limit of s for i j  = 0 is common to all values 
of 8. As already noted by Flory and Ronca, the limit of 
the reduced entropy ASLc-ilk for i j  = 0 had already been 
predicted by Maier and S a ~ p e ~ ~ % '  from their theory. Flory 
and Ronca derived a relation valid at the anisotropic (LC)- 
isotropic coexistence, LC-i, namely, ASmilN& = ~ ~ t 2 T ~ c - i .  
At i j  = 0 we have ASK.i/N,k = 0.4291; this gives s = 0.4347, 
a numerically close value. 

To better assess changes of the order parameter s with 
the concentration of rigid sequences 8, we show in Figures 
3 and 4 two curves, for two different values of the rigid rod 
length @. We have already mentioned an experimental 
value of i j  = 13.2 for a longitudinal PLC.% We have chosen 
for our computations two values of ij differing by 1 order 
of magnitude, so that the value from ref 34 is approximately 
halfway between them. We see in Figure 3 that for the 
lower i j  the order parameter s changes relatively slowly 
with the LC concentration. In Figure 4, for the higher i j ,  
that change is more rapid. The fact that for larger i j  values 
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Figure 5. Dependence of the anisotropic-isotropic transition 
temperature T m d P  on the average length i j  of LC sequencea 
for selected values of 8. 

a small absolute increase in chain rigidity 8 produces large 
changes in the chain alignment may be helpful for the 
development of blends in which a PLC provides a 
significant mechanical reinforcement at relatively low 8. 

In Figure 5 we show a family of curves of T L C - ~ / P  as a 
function of i j  for values of 8 at 0.1 intervals. The 
characteristic temperatures are approximately between 
100 K9 and several thousands of degrees kelvin,% de- 
pending of course on the material and also to some extent 
on the equation of state. A logarithmic scale is used for 
perspicuous representation. We see in all cases that an 
increase in the LC concentration 8 increases the clearing 
temperature TLC-1. While this result is expected, it 
confirms the physical soundness of the theory. If the 
melting temperature T, is less affected by a change in the 
amount of liquid crystallinity than TLc-i is, then the 
temperature range within which LC phase or phases exist 
would go symbatically with 8. The ascending parts of the 
curves on the right-hand side of the figure are related to 
the athermal limit (T1 - 0) already studied by Flory and 
R o n ~ a ~ * ~  for 8 = 1. The i j  dependence in Figure 5 might 
be related to our assumption of having n flexible sequences 
and also n mesogenic sequences. While longer rigid 
sequences at  fixed 8 also mean longer flexible sequences, 
the former thus have a stronger capability to enforce the 
alignment. 

For comparison, in Figure 6 we show a similar family 
of curves for different 8 values in function of i j ,  but now 
the vertical coordinate is TX-i = T~c.i/ijT*, denoted simply 
by T. Similarly, as with the preceding figures, Figure 6 
shows another consequence of ordering caused by in- 
creasing the degree of rigidity. 

Our computations pertain to monodisperse systems, so 
potential effects of polydispersity deserve consideration. 
Polydispersity is known to blunt otherwise sharp phase 
transitions. Flory and collaborators have studied poly- 
disperse systems, and also monodisperse 0 n e ~ . ~ 9 ~ J ~ J ~  Frost 
and Flory13 found that concentrations of the coexisting 
phases and other characteristics of the heterogeneous 
system formed from a Poisson distribution of solute species 
conform closely to those for a binary mixture of solvent 
and monodisperse rods if i j  is large. 

Another question is whether the relative positions of 
LC and flexible sequences along the chains affect the 
properties. This problem was studied by Matheson and 
Flory,16 who found that the allocation of the flexible 
segments between the rods is immaterial; the total number 
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show that 6 L c  limit - 0.3. In other words, since between 
8 = 0 and 8 L c  limit there are not enough LC sequences, the 
transition which upon heating produces an isotropic phase 
is melting. At 6 L c  limit, the melting line might continue 
further right, but it meeta a t  least one more line of the 
diagram: the LC-isotropic transition branch-also called 
the clearing temperature line, shown as the upper branch 
in Figure 7. Except for dividing by P, that upper branch 
corresponds to the TLC-JP vs 6 curves in Figures 3 and 
4. In fact, while for clarity we have included in our 
computations very low 8 values, these two figures pertain 
to the region of 8 > 8 L c  limit. 

The concept of 8 L c  limit is also supported by the results 
in Figure 2. At  concentrations 6 around 0.3 (hence, at or 
near 6Lcrmi t ) ,  there appears a considerable degree of 
alignment, affected only little by a further increase in the 
degree of rigidity 8. 

While we find it convenient to work with O L c  limit, Flo$ 
attacked essentially the same problem in 1956 using the 
average degree of chain flexibility f ,  or chain rigidity 1 - 
f. In the limit when the Gibbs function of bending per 
segment becomes zero, he found that the rigidity depends 
on the coordination number only: 1 - f = l/(z - 1). For 
the limiting rigidity parameter f c  (corresponding to our 
LC limit) Flory obtained In (1 - f c )  = -1. In 1986 
Mathe~on,"~ using results of his and Flory's formalism for 
chains with interconvertible rodlike and flexible coil 
 sequence^,“^ generalized the Flory result. Consider the 
characteristic ratio C, = (1 + e)/ (1 - 8). Matheson derived 
a formula for the limiting ratio Cm(c), which accounts also 
for the chain geometry, involving a measure of the average 
width of the rigid sequences. If C, C Cm(c), an isotropic 
phase will be formed.& Otherwise, a phase which Mathe- 
son called an orientationally ordered phase appears. Thus, 
his treatment is not limited to nematics-a point we discuss 
in the section 3. Clearly, the problem of 6 L c  limit (or f c ,  or 
C,(')) deserves attention in the future; we hope to deal 
with it in a later paper. 

Finally, we note that computer simulations by molecular 
dynamics of systems of PLC chains show21p22 that such 
systems are ductile at low rigidity while brittle at high 0; 
in the latter case, relatively easy crack formation as well 
as crack propagation takes place. Therefore, there exists 
an optimum range of chain rigidity in which the material 
is still ductile while an adequate degree of alignment as 
characterized by the order parameter s prevails. An LC- 
containing system with an appropriate composition can 
be either a PLC copolymer with 6 in the desired range or 
a multicomponent system: a PLC with higher 8 plus one 
or more flexible polymers, so that averaged over all 
components (including those with 8 = 0) falls within the 
range. In the following paper we deal with ternary systems 
of the type PLC + flexible polymer + a monomeric 
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Figure 6. Dependence of the reduced anisotropic-isotropic 
transition temperature f".i on the average length ij of LC 
Sequences for selected values of 8. 
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Figure 7. Part of a schematic phase diagram starting from the 
left at the pure flexible polymer with ita melting temperature 
T, fl&bls. The mole fraction of the liquid-crystalline component 
XLC increases toward the right. A LC phase or phases exist to the 
right of 0Lc bit. 

of rods "suffices to determine the thermodynamic func- 
tions". 

To consider phase diagrams, return to the T L c - , / P  
curves as a function of concentration 6 in Figures 3 and 
4, respectively, for fixed values of ij = 2.5 and 25.0. As 
expected, an increase in LC concentration increases the 
transition temperature. We note that TLc-i  is undefined 
for 6 = 0, since there is no anisotropic liquid-crystalline 
phase. For the lowest value of 6 = 0.01 for which our 
computations were made, that is, when we have very few 
mesogenic sequences, TLc-i/!P = O.OO0 88 for 

A t  8 = 0 we have the usual melting transition of a fully 
flexible polymer. Addition of LC sequences at low 
concentrations in the same phase produces the usual 
lowering of the melting point; LC segments act as an 
impurity (see Figure 7). This melting line continues inside 
of the phase diagram until there are enough LC sequences 
to form a second phase, this at a concentration which we 
shall call 6 L c  limit. The formation of LC-rich phase regions 
is known from e ~ p e r i m e n t s ; ~ ~ ~  these regions are approx- 
imately spherical in shape and have been called islands.40 
The LC-poor matrix surrounding the islands does not 
exhibit discernible alignment. Therefore, the anisotropic- 
isotropic phase transformation has to occur in the islands, 
and equations derived in this paper pertain to that phase. 
As an example, experiments for PET/PHB copolymers 

= 2.5. 
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Appendix 
Elements of Jacobian Matrix. 

where the partial derivatives of f j  and Q are given by 

and 
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