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ABSTRACT 
 
Materials in the glassy state have become an increasing focus of research and development and are 
found in a variety of commercial products and applications. While non-crystalline materials are not 
new, their often unpredictable properties and behavior continue to elude neat systems of 
classification. For purposes of teaching, there is presently a need for further explication of glasses, 
especially given their high importance and the wide extent of glassy materials in existence. This 
work is thus intended to address that need. Voronoi polyhedra have been used to represent 
amorphous (glassy) structures with considerable success; however, the system and procedure are not 
well taught and understood as, for example, are Miller Indices for describing crystals. The present 
article provides a practical update on results extracted from Voronoi polyhedra analyses of simulated 
and real physical systems. There is an alternative approach to characterization of amorphous and 
liquid structures, namely the binary radial distribution function, which is explained. Above all this 
article discusses the nature of the glassy state. 
 
 
INTRODUCTION 
 
In the earliest approaches – dating back to the 
Bronze and Iron Age – the atomic structures of 
naturally occurring crystalline materials were 
amended by introducing lattice defects, e.g. by 
forging. Nowadays, in a century of tremendous 
industrial and technological growth, the 

majority of solid materials already in use or 
under evaluation for novel applications are in a 
non-crystalline state1,2. In spite of that, 
instruction in Materials Science and Engineer-
ing (M.S.E.) and in related disciplines remains 
largely focused on crystals. An attempt to 
remedy this situation was made in this Journal 
just more than a decade ago, in an article 
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explaining the representation of amorphous 
structures by Voronoi polyhedra and under-
lining their effectiveness in isolating even 
subtle differences among the possible physical 
states of a system3. Changes in several metric 
properties of a Voronoi polyhedron –which is 
defined as the convex region of space closer to 
its central particle (ion, atom, molecule, 
monomer, chain segment, etc.) than to any 
other– convey information on microstructural 
fluctuations of various causes. There are in fact 
two methods of characterization of amorphous 
materials; the second one is based on binary 
radial distribution functions. Both approaches 
are discussed in the remainder of this article.  
To begin, we address the fundamental 
distinctions between glasses and crystals and 
between the glassy and liquid states. 
 
 
GLASSES vs. CRYSTALS 
 
As a liquid is cooled from a high temperature, it 
may either crystallize (at the melting temp-

erature Tm) or become super cooled; this is 
shown by the temperature dependence of the 
specific volume, entropy or enthalpy, under 
constant pressure, as illustrated in Fig. 1a. The 
particles (atoms, molecules or ions) forming 
crystalline materials are arranged in orderly 
repeating patterns, with elementary building 
blocks (unit cells) extending to all three spatial 
dimensions. The structures of crystalline solids 
depend (predictably) on the chemistry of the 
material and the conditions of solidification 
(starting temperature and cooling rate, ambient 
pressure, etc.), and can be described easily in 
detail by combining crystallographic notions 
with diffraction/scattering data4-6. Super cooled 
liquids, on the other hand, demonstrate a rather 
intriguing behavior. Upon further cooling 
below the Tm, their particles progressively lose 
translational mobility, so that around the so-
called glass transition temperature (Tg) 
rearrangement to “regular” lattice sites is 
practically unfeasible; this behavior is 
distinctive for the amorphous structures 
described as glasses or vitreous solids. 

 
  

 
 
Figure 1. (a) Typical temperature dependence of the specific volume (v), entropy (S), or enthalpy (H) of glasses 
and crystals. Path (1) is not possible in, for example, atactic polymers lacking a crystalline ordering state.  
(b) Temperature dependence of the isobaric expansivity (also called coefficient of thermal expansion)  
[α = V–1(ϑV/ϑT)P],  heat capacity [Cp = (ϑH/ϑT)P],  and log10 of viscosity (η),  in the region of Tg. 
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The term liquid-glass transition –frequently 
abbreviated to glass transition– signifies the 
reversible transition in amorphous materials 
(including amorphous regions within semi 
crystalline materials) from a molten or rubber-
like state into a hard and relatively brittle state. 
The question of what phase transition underlies 
the glass transition is a matter of continuing 
research. Evidently, this process bears no 
connection with the first-order phase transitions 
in Paul Ehrenfest’s (1933) classification 
scheme7. Those exhibit a discontinuity in the 
first derivative of the Gibbs energy (G) with 
respect to some thermodynamic variable: 
crystallization proffers a characteristic example, 
as discontinuities emerge in both density and 
specific volume (v = (ϑG/ϑP)T, P = pressure) 
versus temperature (T) plots. On the other hand, 
it is observed in glasses that intensive 
thermodynamic variables such as the thermal 
expansivity and heat capacity (second-order 
derivatives) exhibit a smooth step (formally a 
discontinuity at Tg) upon cooling (or heating) 
through the glass transition range (Fig. 1b). 
This fact supports connections of the glass 
transition phenomenon with a second-order 
phase transition8. Nevertheless, the glass 
transition is not a transition between states of 
thermodynamic equilibrium: it is widely 
believed that the true equilibrium state is 
always crystalline. Only by annealing or ageing 
(when time, t, constitutes the prime exper-
imental parameter) is structural relaxation 
facilitated and the structure enabled to explore 
lower energy minima – inaccessible during the 
cooling process – allowing a progressive shift 
to a more stable (lower energy and entropy) 
state. Given the fact that the glass transition is 
dependent on the history of the material (e.g., 
see Figure 2)8 and on the rate of temperature 
change, it seems reasonable to consider it as 
merely a dynamic phenomenon, extending over 
a range of temperatures and defined by one of 
several conventions9.  
 
Interestingly, different operational definitions 
of the glass transition temperature are in use, 
and several of them are endorsed as scientific 
standards. For example, in rheological studies 
one considers Tg to be the temperature at which 

 
 

Figure 2. A kinetic feature of the glass transition 
phenomenon demonstrated in the temperature 
variation of the isobaric volume of polyvinyl acetate. 
Black dots represent equilibrium volumes, while the 
half-moons correspond to the volumes observed 
0.02 h and 100 h after sample quenching (adapted 
from Ref. 10). 
 
system’s viscosity reaches the threshold of η = 
1013 Poise (1012 Pa⋅s), an unfounded supposi-
tion. In dilatometric studies the glass transition 
temperature is located at the intersection 
between the cooling V – T curve for the glassy 
state and the super cooled liquid (Fig. 1a), 
which typically gives a value of the Tg 
approximately equal to 2Tm/3; a feature 
recognized11 as early as 1952 and applauded12 
as “a good empirical rule” with the addition that 
“symmetrical molecules such as poly(vinyl-
idene chloride) tend to have ratios about 0.06 
smaller than unsymmetrical molecules such as 
polypropylene”.12 In dynamical experiments, 
such as in isothermal dielectric spectroscopy 
studies (where a frequency- and time-dependent 
electric field E(ω, t), the stimulus, interacts with 
the electric dipoles in a many-particle system), 
Tg is defined as the temperature where the 
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“structural” relaxation time (τ) reaches the 
value 100 s. In such experiments, τ pertains to 
the time-scale of system’s shift to equilibrium 
after, for example, a thermal, mechanical or 
electrical perturbation9; structural relaxation (or 
intermolecular rearrangement) proceeds by 
collective motions of structural elements (ions 
in metallic glasses, and chain segments in 
amorphous polymers, etc). Even in the case of 
differential scanning calorimetry (DSC), which 
is a routine thermal analysis method9, one will 
find several definitions of Tg. All these arbitrary 
definitions generate largely dissimilar estim-
ates; at best, values of Tg for a given substance 
agree within a few Kelvin. Multiple glass 
transitions may appear in multiphase (comp-
osite) systems, providing information on the 
state of mixing and the strength of interaction 
between the components. 
 
As the liquid passes through its Tg during 
cooling, its viscosity increases by as much as 17 
orders of magnitude (Fig. 1b), but static 
structural parameters (e.g., the static structure 
factor13, S(q)) change almost imperceptibly. 
The absence of long-range order is a distinctive 
– but not the only – difference between glasses 
and crystals. The glass exhibits a long-range 
structure close to that observed in the super 
cooled fluid phase, while displaying solid-like 
mechanical properties on the timescale of 
practical observation. Both in a glass and in a 
crystal it is only the vibration degrees of 
freedom and some rotational motions that 
remain active whereas translational motion is 
arrested.  
 
 
GLASSES vs. LIQUIDS 
 
Having discussed the features distinguishing 
glasses from crystals, we now address the 
distinctions between the glass and liquid states. 
We are familiar generally with the differences 
between a liquid and a glass. However, for 
certain purposes the existing analytical 
techniques do not provide sufficient structural 
details to quantitatively distinguish glass from a 
liquid phase. The molecular processes 
governing the translation of a liquid into a rigid 

amorphous solid are not yet well understood 
and are therefore still a subject of much 
research. 
 
Consider again, what happens during the glass 
transition. Refer to Fig. 1a: upon cooling below 
Tm, molecular motion slows, and below Tg the 
rate of change of volume (or enthalpy) 
decreases to a value similar to that of the 
crystalline solid. Since slower cooling rates 
allow a longer time for particles to sample 
different configurations (maintaining the liquid-
state equilibrium longer), the value of the Tg 
necessarily decreases with a slower rate of 
cooling. Additionally, viscosity (as well as the 
structural relaxation time) is very sensitive to 
temperature near the Tg: some liquids exhibit a 
significant viscous slow-down near the glass 
transition, presumably owing to relaxation 
processes. Although it has been reported that 
the Vogel-Tammann-Fulcher-Hesse (VTFH) 
equation14,15  

      (1a) 

(where C is a system-specific constant) 
represents this behavior reasonably well16, it 
was later stated17 that “there is no compelling 
evidence for the VTFH prediction that the 
relaxation time diverges at a finite temp-
erature”. In a separate attempt to model the 
behavior of super cooled liquids, Angell used 
fragility plots (Angell plots), where the 
logarithm of a dynamical quantity (commonly, 
η or τ) are plotted versus Tg/T (e.g., see Fig. 3), 
to classify liquids on a scale from strong to 
fragile18-20. In Angell’s classification scheme 
the word “fragility” is used to determine the 
tendency of materials to form glasses, in 
contrast to its colloquial meaning, which more 
closely relates to the brittleness of a solid 
material. Formally, fragility reflects to what 
degree the temperature dependence of the 
viscosity, relaxation time, or the resistivity of 
the glass former, deviates from the Arrhenius 
behavior; strong glass-formers nearly exhibit an 
Arrhenius-type dependence 
 

       (1b) 
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Figure 3.     Fragility (or Angell) plots: logarithm of viscosity (log η) vs. reduced temperature (Tg/T) plot for 

glass forming liquids. Inset: heat capacity change at the glass transition for selected systems.20 
 
which implies a simple thermally-activated 
behavior. Moreover, according to this 
classification, liquids are also distinguished by 
their structures: strong liquids such as SiO2 and 
GeO2 (network oxides) have tetrahedrally 
coordinated structures while non-directional 
dispersive forces and complex coordination are 
characteristic of molecules in fragile liquids 
(such as o-terphenyl). The classification of 
liquids as strong versus fragile glass-formers is 
one that continues to be used and continues as a 
subject of investigation. Apart from providing a 
relationship to viscosity behavior, the classi-
fication system provides for some correlation to 
structural features, although we shall see later 
there are alternative approaches to such 
relationships. 
 
Other changes observed in liquids at 
temperatures near the glass transition 
temperature seem to provide additional clues 
for distinguishing the glassy state from the 
liquid state. There appears a decoupling 

between translational diffusion and viscosity 
and also between rotational and translational 
diffusion that occurs below approximately 
1.2Tg.16 Proportionality between the said 
properties is evident at higher temperatures but 
no longer holds as the glass transition is neared. 
Isothermal dielectric relaxation studies of some 
materials indicate that at sufficiently high 
temperatures the liquid exhibits a single 
relaxation mechanism, while at moderate super 
cooling the liquid may exhibit two different 
relaxation mechanisms16. Such observations 
highlight the importance of Arrhenius plots (i.e. 
τ(T) vs. T–1 plots) in studies of system dynamics 
and their potential effectiveness for distin-
guishing the glassy and liquid states; and we 
shall see later how a geometrical approach may 
be used to that end. 
 
We cannot leave such a discussion without 
mention of thermodynamics. Important in the 
present analysis is entropy, especially as it is 
possible to calculate the entropy difference 
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between the (super cooled) liquid and 
crystalline states. At the melting temperature, 
entropy of the liquid state is higher than that of 
the corresponding crystal. The difference 
between the two decreases with the temperature 
owing to higher heat capacity of the liquid state. 
(Importance of the heat capacity function is 
addressed elsewhere by Angell21.) It would 
seem from this trend that the entropy difference 
would soon vanish, however the kinetics of the 
glass transition intervene16. It has therefore 
been proposed that the glass transition is a 
“kinetically-controlled manifestation of an 
underlying thermodynamic transition to an 
ideal glass with a unique configuration”.16 A 
formula of Adam and Gibbs promotes this 
connection22:  

      (1c) 

where C is again a system-specific constant, 
and Sc is the configurational entropy. The 
Adam-Gibbs theory provides a picture of the 
behavior leading to the glass transition. 
According to this theory, a decrease in the 
number of available configurations that the 
system can sample leads to a viscous slow-
down (mentioned earlier) close to the transition 
temperature16. Adam and Gibbs invoke the idea 
of cooperatively rearranging regions (CRRs) in 
their derivation of Eq. (1a) but do not indicate 
the size of such regions nor provide a means to 
distinguish CRRs from one another. In spite of 
the aforementioned weakness in the Adam-
Gibbs theory, Eq. (1a) describes the behavior of 
super cooled liquids quite well. Furthermore the 
outworking of the theory suggests an important 
connection between dynamics and thermo-
dynamics and also between kinetic fragilities 
and thermodynamic fragilities16. 
 
Super cooled liquids and the glass transition can 
also be considered from the viewpoint of the 
potential energy landscape. The so-called 
energy landscape picture provides a convenient 
framework within which to interpret existing 
data and purported concepts. Further details of 
the system are discussed later in this review. In 
brief, the landscape picture establishes 
molecular motion at low temperatures as 

sampling distinct potential energy minima, with 
further distinction of vibrations within a 
minimum. A formal separation of configure-
tional and vibrational contributions to a liquid’s 
properties is therefore possible16. Another 
interesting idea coming out of the landscape 
picture is the notion that super cooled fragile 
liquids are dynamically heterogeneous: possibly 
consisting, in instantaneous moments, of mostly 
non-diffusing molecules with just a few ‘hot 
spots’ of mobile molecules, a theory evidently 
supported by experimental and computational 
work16. Also noteworthy of the landscape view-
point is that it gives a conceivable interpretation 
for the decoupling of the primary (α) and 
secondary (β) dynamic mechanical and 
dielectric relaxation modes, originating, 
respectively, from cooperative (long-range) and 
weakly or non-interacting (localized) motions 
of structural units. 
 
The glass transition phenomenon is often 
treated also as a purely dynamic transition; 
there is no singularity, except that with 
decreasing temperature the dynamics become 
so slow that the system behaves as a solid. The 
most famous approach of this kind is the mode-
coupling theory (MCT), which describes a non-
linear feedback mechanism that links shear-
stress relaxation, diffusion, and viscosity. The 
result of this would be structural arrest 
occurring as a dynamic singularity16. Although 
some features of relaxation dynamics of liquids 
are described well by MCT, it does not give us 
a theory of the glass transition and therefore a 
particular means of predicting the transition 
from liquid to glass. 
 
In summary, we have not yet arrived at a 
coherent theory of super cooled liquids and 
glasses. The behavior of many liquids near the 
glass transition has been described, but not all 
that behavior is thoroughly explained. In their 
review of the topic Debenedetti and Stillinger16 
posit that the energy landscape perspective can 
explain qualitatively much of the behavior. 
What remains then is to establish theoretical 
perspectives with quantitative support. Related 
attempts should be –at least in part– built on the 
dissimilarities existing between liquid and 
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glassy structures, which can be described by 
means of the mathematical concepts of the 
radial distribution function and the Voronoi 
polyhedra. 
 
 
THE  RADIAL  DISTRIBUTION 
FUNCTION  FOR  SPATIAL 
DESCRIPTION  OF  NONCRYSTALLINE 
SYSTEMS  
 
Having spent some considerable time discuss-
ing the nature of the liquid, glass, and 
crystalline states with regard to their physical 
properties and behaviors, we now advance to 
discussion on spatial descriptions of amorphous 
systems. Our picture of glassy structures has 
considerably improved – and given shape 
beyond the instructive balls and sticks model– 
by detailed images of Monte Carlo (MC) and 
molecular dynamics (MD) computer simul-
ations of amorphous cells23. The mathematical 
concept of the radial distribution function 
(RDF) g(r), also known as the pair correlation 
function3,24,25, has provided a means for 
distinguishing subtle differences among the 
amorphous solid and liquid states of matter26, 
especially with regard to structure.  
 
The binary radial distribution function is a 
measure of the probability, ρ2/N(0, r), of finding 
a particle within an arbitrary reference frame 
and located in a spherical shell of an infinitesi-
mal thickness at some distance r from a 
reference center13. That is, the RDF is defined 
as 

          (2) 
 

where ρ = N/V is the average number density of 
N-particle system (e.g., a fluid) in a container of 
volume V. ρg(r)4πr2dr is the number of 
particles at a distance between r and r + dr. The 
calculation of g(r) involves averaging the 
number of particles at a distance r from any 
particle in the system and dividing that number 
by the element of volume 4πr2dr. It is thus 
possible to measure g(r) experimentally with 
neutron scattering27 or x-ray scattering 
diffraction28 data, or by simply extracting the 

positions of large enough (micron-sized) 
particles from microscopy techniques (e.g., 
tranditional or confocal microscopy29). In 
addition, given a pair potential energy function 
u(r), the RDF can be found either via computer 
simulation methods or through approximate 
functions30. Relations involving both g(r) and 
u(r) can be used to calculate important 
equilibrium thermodynamic quantities, such as, 
the potential energy 

      (3a) 

the macroscopic pressure,  

     (3b) 

(kβ being Boltzmann’s constant), and the iso-
thermal compressibility (κT = –V–1 (ϑV/ϑP)T,N) 
27,30,31. Such relations are of particular value for 
non-crystalline systems like liquids, solutions, 
dense gases and amorphous solids, for which 
alternative methods are limited. Note, however, 
that the results will not be as accurate as 
directly calculating these properties because of 
the averaging involved in the calculation of 
g(r). The usability of RDFs in determining 
structural parameters, like the structural 
coordination number z and its changes with 
physical transformations of the system, has 
been extensively demonstrated24,32. 
 
For crystals the RDF approach provides a series 
of delta functions along any crystallographic 
direction. The radial distribution function of a 
liquid is intermediate between the gas and the 
solid (Fig. 4), with a small number of peaks at 
short distances, superimposed on a steady decay 
to a constant value at longer distances (dilute 
gas pattern, see Fig. 4a). The presence of a peak 
indicates a particularly favored reparation 
distance for the neighbors of a given particle, 
thus providing valuable structural information. 
In the solid state, maxima and minima appear 
with positions explained in terms of 
coordination shells of particles packed around 
the central reference particle (Fig. 4c). The 
presence of an atom at the origin of coordinates 
excludes other particles from all distances 
smaller than the radius of the first coordination 
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Figure 4.     Example g(r) plots of MD simulated (a) 500 particle Mie (Lennard-Jones) gas  (number density = 
0.01 and temperature = 1.0), (b) 500 particle Mie liquid (0.5 and 1.0, respectively), and (c) a 2000 particle Mie 

crystal (1.0 and 0.5, respectively).  
Adapted from: http://matdl.org/matdlwiki/index.php/softmatter:Radial_Distribution_Function. 

 
shell, where g(r) has a maximum. It is worth 
noting that structural alterations –as measured 
by traditional static binary correlation functions 
– appear insignificant in the tempera-ture range 
of the glass transition phenomenon. Never-
theless, for reasons just stated, the RDF is still 
useful for describing some points of structure as 
well as for calculating certain properties of 
materials in the liquid and glassy states. 
 
 
VORONOI  POLYHEDRA  FOR  SPATIAL 
DESCRIPTION  OF  NONCRYSTALLINE 
SYSTEMS 
 
In 1908 and 1909 a Ukrainian mathematician, 
Hrihory Voronoi, published his two papers33,34 
defining a mathematical construct –together 

with its dual the Delaunay tessellation– 
essential for  our understanding of the structure 
of amorphous materials. Before examining in 
detail the method of applying Voronoi poly-
hedra to amorphous systems, it is instructive to 
describe the scope of this approach. The 
partition of space into Voronoi polyhedra and 
analysis of their topological features and metric 
properties has numerous applications in local 
structure characterizations of disordered 
systems. The kinds of systems studied with the 
aid of Voronoi polyhedra include: hard-35,36 or 
soft-sphere glasses23,37; liquid metals25,26; 
molten38 and hydrated39 salts; nanoporous 
inorganic membranes40; water at ambient 
conditions41, in super cooled42,43 and stretched 
states42, as well as at the vicinity of the critical 
point43; and other hydrogen bonding liquids44. 
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Polycrystalline microstructures in metallic 
alloys are commonly represented using Voronoi 
tessellations45,46. However, the use of the 
Voronoi method is not limited to the field of 
condensed matter physics but finds applications 
from biophysics47, biology, and physiology to 
astrophysics48 (e.g. fragmentation of celestial 
bodies, for instance, to describe quantitatively 
results of a collision of two meteorites), 
bioinformatics49 and mathematics50. Since 
Voronoi cells can be defined by measuring 
distances to areas as well as to points, the 
approach is being used in image segmentation, 
city planning, optical character recognition and 
other applications51. 
 
Now more to the subject at hand, the glassy 
state: macromolecular systems are often found 
in the glassy state, since irregular chain 
architecture may inhibit crystallization under 
typical polymerization conditions, under 
compression of as-received amorphous spec-
imens, or even under very slow cooling of their 
melts. Consequently, applications of Voronoi-
Delaunay structural analysis to polymer science 
have appeared at an increasing rate, with 
important results extracted for simple linear-
chain polymers52-59, as well as for grafted 
polymers60, polymeric foams61, dense colloidal 
suspensions62 and biopolymers (proteins, lipid 
membranes, etc.)63,64. 
 
The starting point for the description of 
polymer structure is the concept of densely 
packed, entangled, random Gaussian coils65, a 
notion derived from studies on polymer 
solutions and melts. Like inorganic glasses and 
glass-forming liquids, the structure of an 
amorphous polymer exists in a metastable state 
with respect to its crystalline form (although in 
certain circumstances, for example in atactic 
polymers, there is no crystalline analogue of the 
amorphous phase). Therefore, experimental and 
theoretical approaches dealing with the short-
range dynamics of microstructural elements and 
with the spatial description of polymers are 
crucial in our attempt to provide interpretations 
of these phenomena on the microscopic level. 
In the next section, a description of the 
Voronoi-Delaunay method is provided. 

Selected applications will be discussed, with 
emphasis on structural descriptions and local 
particle-dynamics studies of macromolecular 
substances and composites (so-called polymer-
based materials or PBMs). Our focus on this 
particular class of amorphous materials is 
dictated by their expanding usage as metal part 
substitutes in, e.g., automotive and aeronautics 
industries and other engineering applic-
ations66,67.  
 
 
THE VORONOI-DELAUNAY APPROACH 
 
If one were to investigate zirconia ceramics, 
one could not adequately do so without a 
working knowledge of Miller indices since that 
knowledge makes it easy to understand and 
explain the structures and behaviors of the 
crystalline material. As new tools to describe 
amorphous materials are developed, it likewise 
behooves one who works with non-crystalline 
materials to acquire knowledge of those 
techniques. Therefore we shall explain in some 
detail how to use Voronoi polyhedra and their 
mathematical dual, Delaunay simplices, to 
better define and describe glassy materials.  
 
A Voronoi polyhedron is defined as the 
(usually) convex region of space closer to its 
central particle than to any other. It is 
constructed – according to a unique 
mathematical procedure – for individual 
physical entities, hereafter called particles (e.g., 
ions, atoms, radicals, molecules or polymer 
chain segments)3,52,68,69. In this procedure, each 
particle is principally characterized by the 
location of its geometrical center and by the 
size and shape of the surrounding polyhedron. 
For a set of points on a flat surface (2D space), 
with each point representing a particle, links are 
drawn between neighboring points (the so-
called Delaunay triangulation process). Then, 
for each link a line is drawn perpendicular to it 
and passing through a point equidistant from 
the terminal points. By removing the Delaunay 
triangulation, the bisectors produce polygons 
around the particles. For each particle, the 
smallest polygon so constructed is the Voronoi 
polygon; the sum of all polygons constitutes the 
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Voronoi diagram (illustrated in Figure 5).  
 

 

Figure 5. Delaunay diagram (thick lines) and 
Voronoi diagram (thin lines) for a given group of 
particles –represented by dots– in 2D space.  

 
Extending the above construction to 3D, with 
bisectors as planes instead of lines, is 
straightforward. A quadruplet of geometrical 
neighbors (i.e. particles whose Voronoi 
polyhedra meet at a common vertex) forms 
another basic topological object called a 
Delaunay simplex; the four particles are called 
a simplicial configuration. One used to working 
with crystalline materials could easily apply the 
same approach to a simple 2D square lattice. 
The crystals are represented by Voronoi 
polyhedra, in this case squares (cubes in 3D). 
The  Delaunay  simplices  are  identical squares  

only shifted diagonally and equal to unit cells. 
This application of the Voronoi-Delaunay 
method to a square crystal lattice provides a 
simple illustration of the duality between 
Voronoi and Delaunay tessellations.  
 
The procedure for constructing Voronoi 
polyhedra and Delaunay simplices in 3D is 
illustrated in Figure 6. The topological 
difference between these objects is that the 
Voronoi polyhedron represents the environment 
of individual particles whereas the Delaunay 
simplex represents the ensemble of neighboring 
particles (for conceptualization of this, consider 
again comparison to the crystal lattice). 
Furthermore, whereas the Voronoi polyhedra 
may differ topologically (i.e., they may have 
different numbers of faces and edges), the 
Delaunay simplices are always topologically 
equivalent. Ιn three-dimensional space, two 
prevailing configuration types have been found 
based on several models of solids and 
monoatomic liquids: Delaunay simplices close 
in form to a regular tetrahedron (“good” 
tetrahedra) or to a quarter of a regular 
octahedron (quatroctahedra)70. The partitioning 
of space attained in the way just outlined 
constitutes the Voronoi tessellation process. 
When periodicity in local arrangement reaches 
long-range order the above process becomes 
identical to the Wigner-Seitz unit cell method 
for crystalline solids4,71 and the construction of 
the first Brillouin zone (although the fcc 
Brillouin zone leads to a bcc Voronoi 
polyhedron, and vice-versa). 

Figure 6. Partitioning of 3D space (a cube in the present case) containing a randomly placed set of particles 
(dots) into Voronoi polyhedra. 

 

    (a) Irregular point set                      (b) Delaunay tessellation                      (c) Voronoi tessellation 
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Since the shape of the Voronoi polyhedra and 
the arrangement of the Delaunay tetrahedra 
provide a measure of the local environment and 
of particle packing in amorphous systems, 
several topological characteristics and metric 
properties are in use. For each constructed 
polyhedron, Euler’s formula72  
Nυ – Ne + Nf = 2            (4a) 
connects the number of vertices (Nυ), edges (Ne) 
and faces (Nf). In addition, since each vertex is 
the intersection of exactly three faces, and 
hence that of exactly three edges, whereas each 
edge connects exactly two vertices, it follows 
that 
2Ne = 3Nυ.         (4b) 
Nf provides information on the number of 
geometric neighbors of the central particle, 
while the area of a face is related to the distance 
of the corresponding neighbor (i.e., closer 
neighbors generally share larger polyhedral 
faces). Voronoi polyhedra23,37,54 are commonly 
measured by their volume (Vp), total surface 
area (A), shape factor (η'), 

         (5a) 

and curvature (C)  

        (5b) 

where li is the length of edge i of the 
polyhedron and θi is the angle between the 
normals of the intersecting faces37,54. The 
reciprocal of the Voronoi polyhedron volume 
characterizes the local density around the 
particle. By definition η' is 1 for a sphere and 
increases with increasing deviation from a 
spherical shape (e.g., it equals 1.33, 1.35 and 
1.91 for a truncated octahedron, a rhombic 
dodecahedron and a cube, respectively). For the 
Delaunay simplex, descriptions include the 
tetrahedricity (Γ), 

       (5c) 

(where li is the length of the i-th simplex edge 
and lAV is the average edge value for the 
simplex),  along with octahedricity (O), 
perfectness (S), and void size (υT), i.e., the 

largest void that can be inscribed inside the 
tetrahedron without overlapping the 
particles3,23,25,35. 
 
By analyzing metric properties – such as the 
number of faces, polyhedron shape and volume, 
and related distributions – of an assembly of 
Voronoi polyhedra it becomes possible to 
appraise important phenomena and properties 
of non-crystalline materials. Notably these 
include the ability to monitor changes in the 
local structure and the free volume distribution 
as the collection of particles passes – with 
decreasing temperature – from the liquid or 
rubbery to the glassy state (glass transition 
phenomenon), and the possibility to describe 
percolative problems (e.g., phase transitions, 
and thermal or electrical conductivity 
percolation thresholds in polymer nano-
composites). The 3D Voronoi tessellation 
method is now a well-established tool for 
geometrical description of the structure of 
amorphous polymers from sub-nano to macro-
scale levels. Construction of Voronoi diagrams 
is a non-trivial problem for which a few 
algorithms have been proposed with variable 
success23,36,69,73,74; a related routine has been 
offered with MatLab 6.5TM (by The Mathworks 
Inc.), as well as with Materials Studio75 and 
other software packages (e.g., the VORONOI 
program, provided by CAPCPO and running 
within AutoCADTM).  
 
 
FREE  VOLUME  CONSIDERATIONS  IN 
AMORPHOUS  MATERIALS  
 
We have made already a brief reference to free 
volume; and no discussion of structure as we 
are attempting at present can be complete 
without further explication of this important 
aspect. Within the macroscopic volume of a 
material, the so-called “free volume” υf 
constitutes an equilibrium property of the 
system at temperatures exceeding Tg. The free 
volume is of paramount importance in relation 
to thermomechanical characteristics and 
engineering applications of most glassy 
materials, especially of polymer-based 
materials. Molecular motions in the bulk state 
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of polymeric materials are considered to depend 
on the presence of structural voids, also known 
as “vacancies” or “holes” of molecular size 
(typical hole volumes of 0.02-0.07 nm3), or 
imperfections in the packing order of 
molecules. These holes are collectively 
described as free volume, a term also used to 
describe the excess volume that can be 
redistributed freely without energy change. At 
sufficiently fast cooling rates from the rubbery 
state to T < Tg, the spatial position of chains, 
with their folds and constraints, remains fixed 
and unrelaxed to a large extent. Part of the 
unoccupied free volume spontaneously perishes 
with a concomitant reduction of both the bulk 
volume and the equilibrium end-to-end distance 
of chains. The residual υf strongly depends on 
the starting temperature of the quenching 
process, the cooling rate, and the conform-
ational characteristics of the polymer chain. 
 
Quantitative determination of free volume is 
performed infrequently, and that despite the fact 
that several well-established methods exist. For 
example, in glass-forming liquids, molecular 
simulations are used to examine changes of 
local structure and free volume in the 
temperature region approaching the glass 
transition. For probing pore sizes, pore size 
distributions and pore connectivities of poly-
meric systems, techniques including positron 
annihilation lifetime spectroscopy (PALS), 
computer modeling, and numerical analyses of 
amorphous cells have been extensively 
implemented54,76. Moreover, computer simul-
ations provide equilibrated polymer con-
figurations which permit Voronoi tessellations 
of structural groups (atoms, compounds, 
monomers, chains, etc.) to be constructed and 
also examined along the macromolecular chain; 
density fluctuations, ranging from very 
narrow54 to very wide52, and anisotropic 
distribution of free volume53,56 have become 
evident in that way. Additionally, through 
computer simulations collections of particles 
can be classified into liquid- or solid-like 
categories on the basis of free volume and on 
the basis of shape and distortion of the Voronoi 
polyhedra and Delaunay simplices23,37,77. When 
described in such a geometric way, the 

unoccupied volume is no longer treated as a 
“hole” or “free” volume, but rather it is 
associated with the immediate environment of 
individual groups (e.g. side-chains) and the 
topology of the chains. Therefore it will change 
as the polymer is heated, deformed78, or mixed 
with another material (e.g., in the form of 
miscible binary polymer or oligomeric organic 
+ polymer blends80-82). It should be noted, 
however, that the Voronoi polyhedron volume 
only gives an indication of the volume available 
in the periphery of a particle; quantitative free-
volume estimates necessitate subtraction from 
the polyhedron volume of the hard-core volume 
of the particle enclosed (i.e., the incompressible 
volume occupied by the particle at absolute 
zero temperature and an infinitely high 
pressure). 
 
Several reports highlight the importance of the 
notion of the distribution of free volume, rather 
than that of the total free volume of a material. 
Free volume distribution contributes signif-
icantly to several thermal, mechanical and 
rheological properties of a polymer system. Its 
evolution in the course of different time-
dependent thermomechanical and physico-
chemical treatments (drawing or stretching 
deformation, physical aging, curing, etc.) is a 
matter of interest for material scientists and 
engineers. Details of the fine structure of 
amorphous systems can be derived by 
considering individual “atomic” polyhedra. 
When such systems are analyzed in terms of 
Voronoi polyhedra they show wide variations 
in packing density on the atomic/monomer 
scale, with a characteristic skewed distribution; 
in fact, the width of the monomer Voronoi 
volume distribution is regarded as a measure of 
amorphicity.  
 
The combined molecular dynamics and 
Voronoi tessellation analysis of amorphous 
poly(trimethyl terephtalate) (PTT)55, a model 
linear polymer resembling polyethylene53, and 
of other types of unentangled linear chains57,58, 
has successfully addressed the applicability of 
the Voronoi approach in free volume 
distribution determinations. It is worth noticing 
that atomistic simulation studies of “simple” 
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linear polymer chains are rather common, since 
such systems encompass the essential attributes 
of connectivity, constrained flexibility and van 
der Waals interactions. Jang and Jo55, for 
example, analyzed chain conformation 
characteristics, such as bond orientation, the 
dihedral angle, and Voronoi volume tessell-
ation, and showed that the PTT chain under 
extension undergoes conformational changes 
different from those under compression. 
Voronoi volume distribution was found to 
broaden with strain under extension and shrivel 
under compression, with a concomitant 
decrease in free volume. Stachurski52,82 
provided another illustrative example of this 
behavior through a computer simulation study 
of a cell of poly(methyl methacrylate) 
(PMMA), comprising 9000 atoms. The analysis 
of such virtual amorphous cells revealed large 
periodic density fluctuations, which in 
uncrosslinked polymers led to – and provided 
evidence for – the concept of constriction 
points; at locations along the chain where the 
local Voronoi volume is minimal, the 
surrounding atoms act as constrictions on the 
molecular chain within52,78. 
 

The free volume distribution in polymer 
systems is expected to be influenced by tacticity 
and side group substitution. By comparing pore 
distributions obtained from PALS measure-
ments with the static free volume distribution 
obtained from amorphous cells simulated using 
the Voronoi tessellation of space,  Dammert, et 
al.83 have explored these features using poly(p-
methyl styrene) and polystyrene as model 
systems. The results indicated broader hole 
distributions for the syndiotactic specimens 
compared to the more atactic samples. On the 
other hand, modeling revealed that the methyl 
substituent broadens the distribution of free 
volumes considerably; a behavior documented 
in the positron annihilation results as longer 
lifetimes and larger volumes of the holes. The 
maxima in the free volume hole size 
distribution were  of smaller values for the 
polystyrenes than for the poly(p-methyl 
styrene)s. Interestingly, calculations also 
revealed the presence of a large number of 
undersized holes (due to the spacing among 
functional groups in the polymers), with 
dimensions outside the PALS measuring 
sensitivity.

 

Figure 7. Average volume of the Voronoi polyhedron around the particle located at the n position along the 
chain (symmetric positions with respect to the centre of the chain are averaged over n, with  n ≤ M/2, M = 
chain length). Note the larger volume of the polyhedra surrounding the chain ends (n = 1). Inset: chain length 
dependence of the Voronoi volume of the inner polyhedra (from Ref. 57). 
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The chain length dependence of the glass 
transition temperature in polymers is often 
explained by the higher free volume 
surrounding chain ends57,76,84. The Voronoi 
polyhedron volume associated with a chain end 
has been reported to exceed the average 
Voronoi volume57,59,76 (Figure 7). Similar 
arguments apply to both non-deformed 
structures and model systems experiencing 
extensional strain53. For polymers with either 
flexible chains or strong intermolecular 
interactions, the nucleation of cavities upon 
deformation occurs preferentially near the chain 
ends58. Simulations results of the effect of 
stretch and the resulting molecular orientation 
on the free volume distribution in a poly-
ethylene-type polymer confirmed the exper-
imental observation that chain alignment (due 
to increasing extensional strains) causes a 
decrease both in the total number of voids and 
the number-average void size. At the same time 
there is an increase in the number of larger, 
more elliptical empty cavities (voids) in the 
polymer85 due to the extensional strain. The 
effective density increases as result of a 
decrease in the total free volume but it is not 
distributed evenly; free volume associated with 
atoms located away from the ends (i.e., atoms 
generating the so-called “inner” polyhedra) 
decreases, while the free volume associated 
with atoms located at the molecular ends 
increases with stretch. In a recent simulation 
study of the nucleation and growth of voids 
(cavitation process) that precedes craze 
formation, and the early crazing itself, 
occurring in rod-containing polymer nano-
composites, it was found that the Voronoi 
volume can anticipate void formation and that it 
can also be used as a predictor of failure, 
particularly in composite materials86.  
 
The free volume is important to understanding 
the glassy state especially as it applies to 
relaxation dynamics – and we may recall from 
section 3 the significance of relaxation times in 
our characterization of glasses. Here we expand 
the discussion to include relationships with 
chain structure and υf.  The Voronoi space 
division of topologically different groups has 
been explored60 through MD simulations of a 
500-mer polyethylene model chain linked by 50 
hexyl groups as side-chains (i.e., a grafted 
polymer having 52 ends). End (CH3–), internal 

(–CH2–), and junction (>CH–) groups exhibit 
different Voronoi polyhedra shapes with 
volumes decreasing by group in the same order 
as they are here mentioned (Fig. 8). Chain-end 
volumes are the most sensitive to temperature, 
indicating higher mobility for these units. 
Moreover, chain ends dominantly localize at the 
material’s surface. This striking result involved 
the observation that while the ratio of surface 
groups was only 24% of all atoms, the ratio of 
ends at the surface was 91% out of all ends. 
This “preference” has direct consequences in 
the interpretation of accelerated relaxation 
dynamics, namely that as the surface is 
approached, we observe a gradual change along 
with increasing relaxation frequencies. 
Furthermore there is a concomitant depression 
of the global glass transition temperature 
reported for polymers in the form of free-
standing or supported (on to repulsive surfaces) 
ultrathin films87. Therefore we infer a 
significant relationship between chain topology, 
free volume, and the glass transition 
temperature. Such connections are just 
beginning to be fully appreciated and utilized in 
research pertaining to the glassy state. 
 

 
Figure 8. Histogram of the frequency distribution of 
the inverse polyhedron volume 1/Vp at 300 K for 
various groups. The exceptional peak at 1/Vp = 0 
corresponds to open polyhedra. I indicates a small 
shoulder near 1/Vp = 0.03 (end groups), the 
Gaussian-type peak II at 1/Vp = 0.05 corresponds to 
internal groups, and peak III near 1/Vp = 0.08 
corresponds to junction groups. The Voronoi 
polyhedra of the three types of centers are also 
shown.60 
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LOCAL  STRUCTURE,  GLASS 
DYNAMICS AND THE GLASS 
TRANSITION 
 
We are now equipped to examine in further 
detail the local structure — as described by 
Voronoi polyhedra — of amorphous PBMs and 
the relationship to glass dynamics and the glass 
transition. A promising use of Voronoi 
networks involves its application to percolation 
analysis of amorphous structures. Using 
Voronoi networks, one can study diffusion and 
percolation properties of complex systems. 
Percolation theory is commonly used to 
describe natural phenomena that feature a 
continuous phase transition. For a given 
network, finding the critical point pc (i.e., a 
probability, mass or volume fraction) at which 
the percolation transition occurs is a problem of 
particular interest. The glass-to-rubber or glass-
to-liquid transitions in amorphous organic or 
inorganic systems as well as the conductor-to-
insulator transition in insulating organic 
matrices with conductive inclusions constitute 
important percolative problems. There exist 

already examples of how Voronoi-type cells 
can be used for modeling thermal88 and 
electrical89-91 conductivities of various polymer 
nanocomposites. Gerhardt and coworkers90,92, 
for example, describe for compression molded 
polymer-matrix composites the formation of a 
separated network microstructure in which the 
originally circular-shaped matrix particles reach 
polyhedral shapes upon compression. 
Specifically, for polymethyl methacrylate 
(PMMA)/carbon black (CB)89, acrylonitrile 
butadiene styrene (ABS)/CB91, and 
PMMA/indium tin oxide (ITO) 
nanocomposites90, the polymer phases were 
roughly equivalent to ordered Voronoi cells 
(i.e., truncated tetrahedra, with 8 faces and 18 
edges) in the microstructure with the filler 
nanoparticles aggregating along the edges of 
the polyhedra, thereby forming a structure 
comparable to nanowires (illustrated in Figure 
9). Through this approximation it was made 
possible to interrelate the radii of the initially 
spherical matrix particle and filler (rp and rf, 
respectively) with the edge lengths of the 
deformed matrix particle and filler (ap and af, 

 

 
Figure 9. (a) Transmission electron microscopy (TEM) image of ITO nanoparticles. Images in (b), (c) and (d) 
are illustrations of ITO-coated polymer-matrix particles where the filler is depicted as small particles and the 
matrix is depicted as large particles: (b) before compression molding, (c) during compression molding, and (d) 
after compression molding in the final composite with an ITO content near the percolation threshold.90 
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respectively), and finally obtain theoretical 
predictions for the critical volume fraction of 
the filler90. Self-assembled structures such as 
these are the driving force for extremely low 
percolation thresholds, phenomena observed 
through electrical impedance analysis of 
samples with varied filler content. Thus we 
have multiple instances where the measured 
properties of amorphous PBMs are described 
through Voronoi networks. 
 
The information presented so far provides 
unambiguous evidence for the physical 
significance of some simplicial particle 
configurations.  For instance, Voronoi poly-
hedra with large circumradii denote low density 
configurations, and vice-versa. Along these 
lines, the Voronoi-Delaunay technique has been 
utilized for studying subtle differences in the 
structure of liquid and solid (quenched) 
phases70. Structural signatures in the form of 
percolation thresholds of Delaunay net-
works26,70 and increase in icosahedral ordering 
near Tg

93 have been observed in cases of 
simulated amorphous solids and simple liquids. 
Structural information has been extracted by 
studying the percolation thresholds of networks 
of Delaunay simplices of different “coloring”, 
where each color denotes Delaunay sites of 
identical form (i.e., with identical metric 
properties). For example, in a case study of the 
molecular dynamics configurations of liquid, 
super cooled and quenched rubidium, 
Medvedev and coworkers26 indicated that the 
Delaunay simplices develop macroscopic 
aggregates in the form of percolative clusters. 
In the liquid state, clusters result from low-
density atomic configurations.  These macro-
scopic structural organizations in the liquid 
state permit extensive motions, like those in 
shear flow. In contrast to the low-density 
atomic configurations of the liquid state, nearly 
tetrahedral high-density configurations con-
tribute to cluster formation in the solid state. In 
the liquid state, the low-density cluster goes 
across the whole material; in the amorphous 
solid state, the high-density cluster percolates 
across the whole glass.  

In spite of the several differences reported, 
there is generally a lack of signatures of the 
glass transition in the particle positions on the 
molecular level. To overcome this lack of 
markers, a number of studies have focused on 
relationships between local structures, 
characterized by Voronoi polyhedron volume, 
and local dynamics, characterized by particle 
displacements62. In an interesting study back in 
1997, Jund and coworkers94 executed an 
atomistic study –for a simulated 1000-particle 
system– of the mechanism of the glass 
transition, analyzing the volume and surface 
distributions of Voronoi polyhedra above and 
below the system’s Tg. A saturation of the 
density fluctuations was verified as a signature 
of the transition in the system cooled from the 
liquid state. Moreover, evaluating deviations of 
the cell shapes from a regular dodecahedron, 
the authors observed that the fraction of non-
pentagonal cell faces increases with 
temperature in the glassy phase, at the expense 
of 5-edged faces, while at the glass transition 
the trend is reversed and a majority of 
pentagons is recovered in the liquid state. 
Another research group95,96 approached the 
glass transition phenomenon by distinguishing 
between “liquid-like” and “solid-like” defects: 
the concentration, , of liquid-like defects –
defined by them as small particles enclosed in 
heptagons or octagons, and large particles 
enclosed in pentagons or even squares– was 
shown to nearly vanish in the glass state. A 
typical scale parameter was defined as  
ξ ≡ , and found to diverge at Tg

95, in a way 
analogous to the divergence of the relaxation 
time of a viscous fluid as temperature 
approaches Tg. 
 
Gil Montoro and Abascal23 performed 
microcanonical MD simulations of a model 
glass-sphere system featuring Mie (Lennard-
Jones) interactions. This study revealed that 
both the width and asymmetry of the Voronoi 
volume distribution increases when going from 
the solid to the liquid and finally to the gas (i.e., 
a simulated non-interacting fluid) state (Fig. 
10a). Furthermore, the nonsphericity α 
distribution (α = RA/3Vp, R being the average 
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Figure 10. (a) Voronoi polyhedron volume distribution functions about the mean (V* = Vp/Vp(mean)), and 
 (b) nonsphericity (α) distribution functions, for simulated solid (S), liquid (G) and gas (G) systems.  

Replotted graphs from Ref. 23. 
 
curvature radius of the convex body) 
demonstrated the highest versatility in 
describing structural differentiations among the 
three states (Fig. 10b). 

 
Establishing connections between local 
structure characteristics and vibrational proper-
ties in glassy systems remains an open issue. A 
valuable theoretical framework in this pursuit is 
the potential energy landscape (PEL, mentioned 
earlier), where energy is partitioned into basins 
connected by saddle points—a system, which 
represents the complicated dependence of 
energy on configuration97. When studying 
dynamics in the glassy state one assumes a 
separation of time scales as the system 
approaches the glass transition temperature; 
short-time motions are considered to occur via 
intrabasin vibrations about a particular structure 
(a local potential energy minimum), while long-
time motions take place via occasional 
activated jumps over saddle points into 
neighboring basins. In an amplification of this 
concept, the picture of “metabasins” has been 
introduced98. Each metabasin consists of several 
local minima separated by low energy barriers; 
the α-relaxation (the signature of the glass-
transition process in dynamic experiments) 
occurs via jumps between neighboring 
metabasins, with molecular motions proceeding  

in a cooperative manner. Numerous applic-
ations of the PEL approach have been reported, 
including the establishment of links between its 
topography and the dynamics for binary 
Lennard-Jones glasses97, and the identification 
of significant confinement-induced differences 
among model bulk and free-standing polymer 
films99. Jain and de Pablo100 performed detailed 
computer simulations of a model super cooled 
polymer, near its apparent Tg, exploring the role 
of the local “inherent” structure of particles 
(i.e., of their Voronoi polyhedron) on motions 
on the PEL101,102. Their results indicated that the 
time of vibration of a particle in a metabasin 
correlates with the structure of its Voronoi 
polyhedron and with the number of its 
neighbors; the largest metabasins corresponded 
to particles whose average Voronoi volume was 
close to the value expected on the basis of the 
density, and whose approximate number of 
neighbors approached 12 (icosahedral order-
ing). The local distortion around a particle, 
measured in terms of the tetrahedricity of the 
Delaunay simplices, also revealed that particles 
with a higher degree of local distortion are 
likely to transition faster to a neighboring meta-
basin. The above arguments stress the 
significance of the identification of structural 
motifs in understanding the influence of 
chemical structure on the dynamics in glass 
formers. 
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On a totally different –yet still related– 
direction, Luchnikov and coworkers37 studied 
atomic configurations in a simple soft-sphere 
model glass and demonstrated the usability of 
the Voronoi-Delaunay structural approach in 
deciphering correlations between normal-mode 
vibrations with parameters characterizing local-
structure perfectness (i.e., O, S and Γ, defined 
above). In combination with a conventional 
harmonic vibrations analysis the conclusion 
drawn was that in real space the lowest-
frequency quasi-localized vibrations can be 
envisaged as being caused by instabilities in 
local geometry. 
 
 
VORONOI   TOPOLOGIES   OF 
MICROSCOPY  IMAGES 
 
A majority of theoretical studies based on 
statistical physics that incorporate the Voronoi-
Delaunay approach analyze objects existing 
within virtual space created by a computer. 
Nevertheless, in the discipline of applied 
materials science geometric analyses of 
Voronoi topologies involve –on a more and 
more frequent basis– real structural information 
acquired, among other techniques, from 
scanning electron (SEM), atomic force (AFM) 
and scanning tunneling (STM) microscopy 
images61,90,103-105. Nearly two decades ago, 
Stange, et al.105, using AFM and STM, followed 
the evolution of spin-coated polystyrene films 
on silicon surfaces from individual isolated 
molecules to a continuous film. At a critical 
polymer concentration in toluene (the 
polymer’s solvent), they observed the formation 
of 2D Voronoi tessellation-like networks of 
polystyrene molecule aggregates, which they 
subsequently discussed in terms of a specific 
failure mechanism leading to film rupture in 
spin-coating processes. Recently, Song et al.106 
used Voronoi diagrams and bond-orientation 
correlation functions to analyze microscope 
images of “structured” microporous polymer 
films (i.e., films with closely packed hexagonal 
arrays of pores). A direct measurement of the 
open pore sizes and their distribution was made 
possible. 
 

 
Figure 11. (a) SEM image of a polymeric foam 
(×100), and (b) its Voronoi diagram.61 
 
Jacobs and coworkers61 recently discussed a 
quantitative method for the comparative 
Voronoi analysis of various polymeric foam 
morphologies. At the foundation of their 
analytical technique are parameters related to 
the average Voronoi cell area, cell area 
distribution, and foam homogeneity. As a first 
step in this approach, cell walls are visualized 
with SEM analysis of a cross section of the 
foam (Fig. 11a). Using only the perimeter of the 
cells as markers, the cell structure appearing in 
such images is subsequently converted into a 
grid (using MatLabTM) after which the Voronoi 
diagram is constructed (Fig. 11b). The 
homogeneity of the foams could thus be 
described in terms of cell area, perimeter and 
number of faces. Using poly(styrene-co-methyl 
methacrylate) foamed with supercritical carbon 
dioxide as model system, Jacobs et al.61 

a 

b 
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demonstrated the ability of the above method to 
reveal even slight changes in a foam’s homo-
geneity. The accuracy of the constructed 
Voronoi diagrams is clearly dependent on the 
perspicuity of the SEM pictures; use of 
sufficient contrast between the voids and the 
continuous phase is mandatory. 
 
Similar descriptors are applied to morph-
ological characterizations of fiber reinforced 
composites in terms of Voronoi polygons103,104. 
For example, the transverse spatial distribution 
of glass fibers in continuous fiber reinforced 
epoxy microstructures has been described using 
Voronoi polygon areas and nearest neighbor 
distances as spatial descriptors103. In such an 
approach, Voronoi tessellations with fibers 
located at cell centers were generated from 
SEM micrographs. Convergence towards global 
distributions was observed (for both metric 
properties) at increasing sample sizes for most 
of the systems studied. Statistical tests provided 
estimates of the size of the volume element 
(i.e., a sampling area dimension), which is 
representative of the global microstructure and 
inhomogeneity in each material. At the scale of 
this “representative” volume element any 
sample taken of the actual composite structure 
is deemed equivalent, and representative, of the 
entire microstructure. 
 
Concentrated colloidal suspensions are also of 
interest as they may exhibit a distinct glass 
transition whose value is a function of particle 
concentration or density. Using dense colloidal 
suspensions as a model system, Conrad and 
coworkers62 searched for correlations among 
the Voronoi volume and particles’ displace-
ment. Particle positions were imaged by 
confocal microscopy using fluorescently 
labeled polymer spheres. Results indicated that 
the scaled (by the standard deviation) 
distribution of Voronoi volumes around the 
average Voronoi volume is universal for 
dispersions with a hard interparticle potential 
(i.e., super cooled liquids containing “hard 
spheres” with a Lennard-Jones type potential). 
The scaled distributions were shown to fall onto 
a universal curve over a wide range of volume 
fractions of the polymer spheres in the colloidal 

suspension, in excellent agreement with the 
simulation results. 
 
 
GLASS   TRANSITIONS   IN   BINARY 
SYSTEMS 
 
Microstructure is a critical determinant of 
various thermophysical and mechanical 
properties of inorganic + organic composites 
and of miscible organic blends. Moreover 
microstructure is a key feature for materials in 
selected applications such as drug delivery 
systems and composite solid state dye laser 
matrices, among others. While the method of 
material processing makes some contribution to 
the resultant microstructure, that structure for 
organic polymer blends is also inherently 
dependent on the balancing among inter- and 
intra-molecular interactions and the ensuing 
local density fluctuations. Molecular packing is 
clearly reliant on chemical composition, 
polymer chains conformation and configur-
ation, and the degree and relative strength of 
enthalpic and entropic factors. Given the 
complexity of the underlying mechanisms in 
such polymer systems, a usually inhomo-
geneously dispersed population of structural 
voids appears, with dimensions extending even 
up to ~10 nm. Connected to all these attributes 
of amorphous binary systems is the glass 
transition – and with it relationships to 
microstructure. 
 
Microstructural peculiarities are evident in 
miscibility studies of binary polymer79,80 and 
drug + polymer mixtures81,107. Notably, the 
glass transition temperature of these systems 
manifest anomalous dependencies on com-
position (φ, as a mass fraction) (Figs 12, 13). 
Even in cases of athermal binary mixtures, 
there is ample experimental evidence in binary 
mixtures that the thermodynamically predicted 
smooth and monotonic Tg(φ) variation, 
confined within the transition temperature 
region of the constituents, is often violated. 
This is the case irrespective of the problems 
encountered in defining or locating the Tg of a 
given system – an issue also partly related to 
kinetic attributes of the glass transition.  
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Figure 12. (a) Tg vs. composition dependence of 
Intraconazole (ITZ) + PLS-630 blends, and (b) 
compositional variation of density ρ and excess 
mixing volume VE (per gram of mass) for the same 
mixture. Compiled from data appearing in Ref. 107.  
 
 
Quantitative description of the deviations from 
ideality has been attempted through various 
theoretical and semi-empirical equations81, with 
the most system-inclusive approach only very 
recently proposed (by Brostow, Chiu, 
Kalogeras and Vassilikou-Dova)108  in the form 
of the function 
 
Tg = φ1Tg,1 + (1 – φ1)Tg,2 +  
      + φ1(1 – φ1)[a0 + a1(2φ1 – 1) + a2(2φ1 – 1)2] 

          (6) 

 
Figure 13. Tg vs. composition dependence of 
poly(styrene-co-N,N-dimethylacrylamide) [with 17 
mol % of N,N-dimethylacrylamide] (SAD17) + 
poly(styrene-co-acrylic acid) [with 18, 27 or 32 mol 
% acrylic acid]80. Thick lines are fits to the BCKV 
equation (6). 
 
 
with φ1 denoting the mass fraction of the low-Tg 
component. Eq. (6) is more recently called the 
BCKV equation81. The quadratic polynomial on 
its right side, centered around 2φ1 – 1 = 0, is 
defined to represent deviations from linearity. 
The type and level of deviation is primarily 
described by parameter a0, which mainly 
reflects differences between the strength of 
hetero- (intercomponent) and homo- 
(intracomponent) interactions. The magnitude 
and sign of the higher-order parameters a1 and 
a2 is dictated by composition-dependent 
energetic contributions from hetero-contacts, 
entropic effects and structural heterogeneities 
(e.g., nanocrystalline phases). Along these 
lines, the number and magnitude of the 
parameters required to represent an 
experimental Tg(φ) pattern provide quantitative 
measures of a system’s complexity. Evidently, 
irregularly positive or negative –or even 
sigmoidal– deviations from the linear mixing 
rule are strongly linked to the compositional 
dependence of the total free volume and the 
free volume distribution around pertinent chain 
segments. All these “asymmetric” entropic or 
enthalpic contributions are expected to reflect 
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in the volumes and numbers of faces of the 
composite polyhedra of structural particles 
(e.g., monomers for polymers and molecular 
polyhedra for oligomeric organics). 
 
Voronoi analysis of binary systems is in 
principle possible, e.g., by using MD 
simulations to obtain equilibrated 
structures109,110 and developing appropriate 
analysis codes.  For example, there was recently 
a report109 of MD simulation of the 
compatibility of chitosan (CS) + poly(vinyl 
pyrrolidone) (PVP) biomedical mixtures. 
Although the Voronoi tessellation analysis was 
not conducted, the binary RDFs could be 
calculated from amorphous cells obtained for 
selected blend compositions. The RDF behavior 
(Figure 14) confirmed the supposition that the 
components’ miscibility arose from hydrogen 
bond formation among the –C=O group of PVP 
and the –CH2OH group of CS. A Voronoi-
Delaunay analysis of that particular mixture 
would be of high interest to our present 
discussion, especially given the strongly 
sigmoidal shape of its Tg vs. composition 
pattern111 and its classification as a “high-
complexity” binary system81. 
 
 

 
Figure 14.  RDF calculation for a miscible 80/20 
(molar fraction) CS + PVP blend, using the 
hydrogen atom of the hydroxyl methyl group of 
chitosan (solid line) and the hydrogen atom of the –
NH2 group of chitosan (dotted line) relative to the 
location of the oxygen atom of the carbonyl group of 
PVP95. 
 

Considering the increased depth and image 
resolution of contemporary microscopy 
apparatuses discussed in the previous section, 
one may attempt performing V-D analysis of 
electron miscoscopy images of miscible blends 
as spin casted or solvent evaporated thin films, 
for example. However, development of 
sufficient suitable codes remains an unsolved 
problem. Likewise, selection criteria are needed 
for distinguishing among the two different 
populations of "composite" polyhedra in a 
binary mixture; for example, the ones generated 
by drug molecules and those encompassing 
preselected polymer segments (i.e., the 
elementary unit of a monomer). 
 
 
SUMMARY 
 
Considerable literature exists regarding the 
representation of structures of amorphous 
materials. Of the available approaches, the 
Voronoi-Delaunay tesselation technique and the 
radial distribution function are usable for any 
material structure – crystals included. The 
experimental information and theoretical 
analyses discussed in this review exemplify 
their efficacy for quantitative local-geometry 
investigation112 of various types of non-
crystalline solids. In view of that, both 
approaches warrant inclusion in Materials 
Science Education (MSE) courses and should 
be taught along with the venerated 
crystallographic methodology.  
 
A brief scheme of an introductory MSE 
module, or a pertinent educational presentation 
that makes use of the information previously 
presented, is given in Table 1. Several 
computational-geometry routines and applets 
are available113-119 for instructors interested in 
an attention-grabbing interactive demonstration 
of the construction of Voronoi diagrams and 
Delaunay triangulations in any random set of 
particles. Representative tools proffer the 
JavaTM applets of Paul Chew114 (Cornell 
University), Andreas Pollak115 or Christian 
Raskob116 (University of Hagen), which were 
created as part of their diploma dissertations or 
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related activities. The VoroGlide applet117 
(University of Hagen) is another interesting 
program for interactive Voronoi diagrams, 
offering a single step animation mode for the 
incremental Delaunay construction and a 
recorder for teaching purposes. There are also a 
number of websites providing educational 
programs that can serve as sources of interest 
for the novice in the field. For example, a 
webpage under the title “Weighted Voronoi 

Diagrams in Biology” describes a program that 
constructs weighted Euclidean and power 
diagrams for computer simulation and analysis 
of a system of growing plants120. It also 
demonstrates application of power diagrams to 
problems from the fields of biology and 
ecology. Sites such as this, along with the 
mentioned applets, provide an opportunity for 
practical exercise of the concepts outlined in 
Table I and discussed in this review. 

 

 

Table I.   Proposed plan of an introductory MSE module, related to the Voronoi-Delaunay 
representation and analysis of non-crystalline structures and other applications. 

 

Steps Visual tools 
(suggestions) 

Training resources 
(JavaTM applets, etc.) 

   
1. Introducing basic notions 
   a) States of matter: Gas, Liquid, Solid. 

  

   b) The solid state: Glasses vs. Crystals. Fig. 1.  
   c) Glasses vs. Liquids: The glass transition. Fig. 1; Fig. 2; Fig. 3.    
   
2. Structure descriptors 
   a) RDFs 
 
 

 
Fig. 4 (and comparison with 
δ-function RDFs of typical 
crystals). 
 

 
 
 
 

   b) The Voronoi-Delaunay (V-D) approach:  
        Construction and metric properties. 

Fig. 5; Fig. 6 (and 
comparison with 
crystallographic notions). 

Real-time practicing 
with V-D graphs113-118 

   
3. V-D analysis: case studies  
   a) Free-volume distribution in polymers. 

 
Fig. 7; Fig. 8. 

 

   b) Local structure and transitions. Fig. 9; Fig. 10.  
   c) Polymeric foam morphologies. Fig. 11.  
   
4. Ideas for future applications 
   a) Modeling glass transitions in binary 
systems. 

 
Fig. 12; Fig. 13; Fig. 14. 

 
 

   b) and more, from instructor’s research 
field… 

 Voronoi & biology120 
Voronoi & fractals121,122 

   
5. Time for relaxation: The Voronoi game! 123 
A two-player game based on a simple geometric model for the “competitive facility location”. 
Competitive facility location studies the placement of sites by competing market players. The geometric 
concepts are combined with game theory arguments to study if there exists any winning strategy. 
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