
Abstract Stress–time correspondence principle discov-
ered experimentally by O’Shaughnessy already in 1948
[1] is considered. Using the Doolittle formula for the vis-
cosity as a function of free volume [2], an equation for
the generalized temperature–stress shift factor aT,σ is ob-
tained. An equation for the stress-dependent shift factor
aσ follows as a special case. The equation for the temper-
ature shift factor aT already derived in 1985 [3] and suc-
cessfully used since also follows from the aT,σ formula.
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Introduction and scope

Large amounts of mechanical, rheological and other
properties of viscoelastic materials as functions of time
are continuously being determined experimentally. The
reason for this activity is the need to evaluate long-term
performance and reliability of polymeric materials and
components from short term tests – and also the belief
that the properties in question are still far from suffi-
ciently understood. Thus, we need the understanding not
only for intellectual satisfaction but also for the develop-
ment of predictive methods – so as to be able to save
dramatically the time required for the experiments.

While certain predictive tools exist, they are often un-
derestimated. An important such tool, the time–tempera-
ture correspondence principle, eloquently presented by
Ferry and coworkers [4] has been used to advantage by
others [3, 5–12]. Now we shall examine a tool of poten-

tially comparable importance, namely the time–stress
equivalence principle. One needs to point out the follow-
ing: both principles are clearly based on the fact that in a
viscoelastic material under load we have variations of
free volume vf with time t, with temperature T and with
stress σ. Therefore, a generalized time-temperature stress
correspondence principle should exist also. This situa-
tion behooves us to formulate a quantitative relation
which would embrace t, T and σ together.

Previous work: the existence 
of time–stress equivalence

In 1948 O’Shaughnessy [1] reported on work he started
in 1945: compliance values of rayon from creep experi-
ments for different levels of stress σ will fall on a single
locus when plotted against time or a function of time.
One notices the careful language of O’Shaughnessy. This
was followed in 1953 by a similar study of nylon [13],
with similar results. Later on more studies have been
performed, including those by Gruntfest and coworkers
[14] in 1957, by Urzhumtsev and Maksimov [15] in
1968 and others – as discussed in a book by Goldman in
1994 [9].

In spite of this long history, the stress somehow does
not have equal rights with temperature and frequency in
formulating correspondence-type relations while the util-
ity of such relations is evident. Thus, we need a formula
for the stress shift factor aσ that would allow us – as
O’Shaughnessy did using experimental data only – to
move curves obtained at different stress levels to create a
single master curve. Before doing this, we shall consider
the temperature shift factor aT. We shall need it to obtain
later the combined temperature–stress shift factor aT,σ.

Temperature shift factor

We recall first the time–temperature correspondence
principle [4, 9, 16]: from mechanical measurements
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made at several temperatures one can create a master
curve for a chosen temperature Tref extending over sever-
al decades of time. Shifting of individual curves to pro-
duce the master curve is performed using the tempera-
ture shift factor ln aT. For a property such as the creep
compliance D we have

(1)

(2)

where η is the viscosity and v the specific volume (for
instance in cm3g–1). The reduced volume ν̃ and other re-
duced parameters are defined as follows:

(3)

where v*, T* and P* are the characteristic (hard-core)
parameters for a given material. The free volume vf can
then be calculated as

(4)

where vf and v* are in the same units as v.
We also need the Doolittle equation [2] relating the

viscosity to free volume:

(5)

where A′ and B are materials constants. Ferry [4] noted
that Eq. (5) is empirical, but we now have a better under-
standing of its physical significance and the reasons why
it works well. The second term is fairly obvious: more
free volume leads to lowering of viscosity. Creation (or
partial annihilation) of vf can be accomplished by vary-
ing for instance the temperature. The first term is also a
material constant which take cares of the factors which
do not depend on free volume and the molecular packing
directly. For instance, there exist collective small ampli-
tude motions of adjacent torsions, seen in molecular dy-
namics simulations of isoprene, where constrains created
by the environment play a role [17].

By applying Eqs.  (5) and (4) to the definition (2), one
obtains [3, 6] the following formula:

(6)

where A is a constant characteristic for a given visco-
elastic material and related to A′. Various special cases
can be obtained from Eq. (6), including the well-known
Williams–Landel–Ferry (WLF) equation [18, 4]. Howev-
er, Ferry warns [4] that the WLF equation serves at most
in the temperature range of 50 K, namely from the glass
transition temperature Tg to Tg + 50 K. Therefore, van
Krevelen [ 19] recommends using below Tg an Arrhenius
type equation, as espoused by Glasstone, Laidler and 
Eyring [20] in their theory of rate processes developed in
the 1930s. Clearly we are better served – both fundamen-
tally and practically – by using a single equation.

A simplification of Eq. (6) is possible. It has been
proven numerically for low-density polyethylene [6] that
variations of the Trefv/(Tvref) term with the temperature
are insignificant. Thus, one can assume

(7)

so that

(8)

Equation (8) has been used with success for an adhesive,
polyethylenes, polyurethanes and a PLC [3, 6–8, 12, 21,
22].

For predrawn materials, with the draw ratio λ = ε+1,
where ε is the engineering strain, Eq. (8) was generalized
further [10] to the form

(9)

Here the first parameter in Eq. (8) is now AT = 1/[a+cλ]; a
and c are constants characteristic for a given material but
independent of the degree of orientation and of tempera-
ture. Clearly parameters a and c do not affect the shape of
the aT(T) curve. The denominator of the first term in Eq.
(9) constitutes a direct measure of the orientation.

Equations (6), (8) and (9) are only usable in conjunction
with an equation of state. Good results have been obtained
repetitively [8, 10, 21, 12, 22] with the Hartmann equation
which is valid for both polymer solids and melts [23–25]:

(10)

A convincing and straightforward derivation which leads
to the T3/2 term was presented by Litt in 1976 and dis-
cussed again in 1978 [26]. It seems that his starting point
were the problems with the WLF equation. WLF hap-
pened to be working with the reciprocal free volume and
they have assumed that vf–1 varies linearly with the tem-
perature. While for certain properties a linear expression
might represent a reasonable first approximation to reali-
ty, the Litt derivation shows that this does not apply to
volume. He says that the validity of the key WLF as-
sumption can be seriously questioned and shows data for
polystyrene proving how bad results the WLF equation
produces. Litt also points out that the WLF equation in
conjunction with the Doolittle equation predicts infinite
viscosity at approximately Tg–50 K.

Stress shift factor

In view of the discussion in the beginning of this paper,
we need to derive a formula for the stress shift factor aσ.
It should serve a role similar to that of the temperature
shift factor aT. Thus, for a property such as the creep
compliance D we can write

(11)
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D(T,t) = D(T t / aref T, )

a T v / ( TvT ref ref ref= η η )

˜ ˜ ˜v = v / v*; T = T / T*; P = P / P *

v = v – v *f

ln ln A + Bv * /vfη = ′

lna A + ln[T v / (Tv B / (v – 1)T ref ref= +)] ˜

d[T v / (Tv dT 0ref ref ) / ≈

lna A B / (v – 1)T T= + ˜

lna 1 / [a + c ]+ B / (v – 1).T = λ ˜

˜ ˜ ˜ ˜Pv T ln .5 3/2= − ν

D( t) = D( t / arefσ σ σ, , ).



An attempt to calculate aσ is described by Goldman [9].
However, it is based on the concept of the activation ener-
gy Uact used extensively by Eyring and his colleagues
[20]. There is the limitation pointed out by van Krevelen
[19] and already noted above that relations of this type can
be used at low temperatures only. Moreover, according to
the Eyring model, Uact should be a constant. However, it is
not a constant even for one kind of polyethylene (PE);
contrary to the assumptions made, Uact varies with the
temperature [10]. Ohta and Yasuda [27] report for a single
highly branched PE that Uact varies by more than 400 %,
from 89 to 362 kJ·mol–1. They show a single continuous
curve of ln aT as a function of T–1; an attempt to present
the curve as combination of three straight lines for three
different values of Uact produces an evidently artificial re-
sult contradicted by the experimental data. The work of
Ohta and Yasuda includes a variety of PEs with various
degrees of branching. In all other cases these authors have
investigated Uact also varies widely – what vitiates the as-
sumption made by Glasstone, Laidler and Eyring [20]. In
both his thoughtful papers Litt [26] mentions the existence
of the activation energy approach but finds no use for it.
Still further, in 2000 Mano and his colleagues [22] report
that values of Uact depend on the experimental procedure
used. Thus, Uact is not a material property.

There is a simple explanation why the Glasstone–
Laidler–Eyring model cannot possibly work. Their basic
assumption is that that it takes energy to move a small unit
of a material from its environment. The energy required is
called the activation energy for something (diffusion,
flow, chemical reaction, etc) – and this statement does
make sense. However and as already noted, Glasstone and
his colleagues have assumed that the activation energy is a
constant. In reality the energy required for any of the pro-
cesses they have considered changes with the environ-
ment, more specifically with the distance R between parti-
cles (polymer chain segments, atoms, ions). The behavior
is governed by the interaction potentials, mainly by the
pair interaction potential u(R). The very existence of u(R)
is one of the basic tenets of molecular physics. Changes in
the average R values, caused for instance by increasing
the temperature of the material, are reflected in free vol-
ume changes via the equation of state. When Glasstone
and his colleagues assume that Uact is a constant, they si-
multaneously assume that the average R values do not
change with anything. Then the isobaric expansivity and
the isothermal compressibility (see Accessibility of equa-
tion of state data below) would be always zero; equations
of state would not be needed at all. Possibly in the 1930s
Glasstone, Laidler and Eyring realized this, but they want-
ed a procedure enabling simple calculations with slide
rules; computers were then nowhere in sight.

Under these circumstances, we rewrite Eq. (2) in a
more general form, introducing explicitly the depen-
dence on the stress σ while taking as before care of the
shift caused by temperature changes:

(12)

Effects of the temperature (thermal energy changes) are
evidently represented by the first term in Eq. (12). How-
ever, T changes affect also the specific and free volumes,
hence the dependence on temperature of the remaining
terms. The various effects created by varying the stress
level (see above the discussion following Eq. (5)) are
represented by the explicit dependence of the second and
third factor an σ. We recall that, when we consider de-
formation of a small cubical element, it can be decom-
posed into a volume change (hydrostatic stress) and a
change in shape (shear stress components) [28]. While in
general the stress σ is a tensor with nine components
[29], the simplified notation may be used when we are
dealing with deformations such as uniaxial tension or
compression.

Looking at the same situation from the molecular
point of view, varying T we change simultaneously at
least the mobility (energy) of chain segments, their capa-
bility to undergo conformational transitions jointly with
their neighbors (energy barriers to overcome), and the
free volume available for segmental motions. The me-
chanical forces applied affect all these phenomena as
well. The processes in question take place at different
rates; this is why formula (7) constitutes a reasonable ap-
proximation, while the η/ηref ratio changes with T much
faster [6].

We now need a relation between the logarithmic vis-
cosity η and the stress level σ, that is a generalization of
the Doolittle Eq. (5). We make the simplest possible as-
sumption, namely a linear relation between the two:

(13)

Thus, in the spirit of Arthur K. Doolittle, we have as-
sumed that his constant B is independent of the mode of
varying free volume. However, the parameters A′T and
A′σ have to be different – representing different modes
of affecting the interactions in the material when varying
the temperature or the stress level. At the same time, the
parameters A′T and A′σ are independent of the mode of
performing the experiment. In general, the parameter C
can be either positive or negative (recall dilatancy and
pseudoplasticity in molten polymers). A negative C re-
flects the decrease of viscosity with increasing shear, a
phenomenon typical in molten polymers [30]. Also in
solid polymers a negative C implies an increase of free
volume upon an increase of stress. Thus, higher σ acts
similarly as higher T; the master curve will show a me-
chanical property under study at higher stress values cor-
responding to higher times.

It has been proven for a multi-phase polymer liquid
crystal, namely the copolymer of poly(ethylene tere-
phthalate) (PET) with p -hydroxybenzoic acid (PHB)
containing the mole fraction of the latter equal to 0.6,
that the temperature shift factor aT values are indepen-
dent of the experimental procedures such as creep or
stress relaxation [12]. This testifies to the physical sig-
nificance of parameters in Eqs.  (5), (6), (8) and (9). We
shall see whether the simple assumption of the last term
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a T T) [(v(T, ) / v TT, ref ref ref refσ σ σ= ⋅( / ( , )]

T, ) / Tref ref refη σ η σ⋅[ ( ( , )].

ln[ (T, )] = ln A + B / (v 1) + ln A C .Tη σ σσ
′ ′− + ⋅˜



in Eq. (13) and its consequences will be also verified ex-
perimentally.

Now by straigthforward arithmetic we obtain from
Eq. (12) in conjuction with (13) and the definitions (3)
and (4):

(14)

Eq. (14) is the desired result. Given the reduced volume
in the fourth member of (14), the equation is usable 
also only in conjunction with an equation of state. We 
intend to continue to use for this purpose the Hartmann
Eq. (10).

We first need to verify whether Eq. (14) reduces for a
constant stress level to Eq. (6) as it should. Indeed, by
assuming σ = σref we recover Eq. (6).

Similarly as the temperature shift factor aT, we shall
need also a simple shift factor aσ formula dependent an
the stress level σ only for T = const = Tref. Simplifying 
Eq. (14) accordingly, we obtain

(15)

where vref = v(σref, Tref). Experimental verification of
the validity of Eq. (15) will be reported in a subsequent
paper [31].

Accessibility of equation of state data

It is sad that the WLF equation is still being used outside
of its application range, in spite of the warning by Ferry
and the important work of Litt. Developers of software
which calculates the temperature shift factors aT from the
WLF equation contribute to the confusion. Some of such
computation programs use the supposedly universal WLF
constants, what makes the situation still worse. When the
WLF equation produces dramatically wrong results, this
might be the consequence of inappropriate material pa-
rameters, or too wide application range, or both. Unfortu-
nately, some engineers conclude then that it is the TTC
principle which is inapplicable. In reality, the principle
generally works pretty well, but they have chosen the least
reliable calculation procedure based on the principle.

Ostensibly the problem with the aT equations (6) 
and (8) – which so far have always produced reliable re-
sults – is that they require the knowledge of the equation
of state in the form of v(T, P). The same applies to 
Eqs. (14) and (15) derived in this paper. However, the
experimental accuracy of determination of the equation
of state is increasing, and so is the accessibility of equip-
ment for that purpose. Moreover, the equation of state re-
sults are needed also for other purposes. For instance,
once the parameters v*, T* and P* in the Hartmann Eq.
(10) are determined from the P–V–T results, one can cal-
culate the bulk modulus kB. We apply the definition of
the isothermal compressibility

(16)

and differentiate Eq. (10) accordingly. If the compress-
ibility does not change with pressure, the bulk modulus
can be calculated as the reciprocal of the compressibility
[29], with the result

(17)

Fairly often one deals with a constant pressure situation,
one atmosphere in particular. Then either the volumetric
isobaric expansivity

(18)

or the linear isobaric expansivity

(19)

where L is the length (or height) of the specimen, are
useful. αL can be determined with a thermal mechanical
analysis (TMA) αL II apparatus along three Cartesian co-
ordinates, and then converted into a by simple addition.
Often (for instance in extrusion) we have an orientation
along the flow and the corresponding αL II value, while
the two Cartesian directions perpendicular to the flow
render a single αL II value. Then

α=αL II+2αL ⊥ . (20)

Needless to say, the situation is still simpler in an isotro-
pic viscoelastic material. Independently of the isotropic-
ity – or otherwise – of the material, once the α values
have been calculated, one can then use a single experi-
mental value of the specific volume v (typically at the
room temperature) to compute v(T). A simple increment
algorithm

(21)

works quite well [8]. Given the v(T) results, one can
substitute them into Eq. (10) and solve an overdeter-
mined system of Hartmann equations for v* and T*.
Then one can apply equations such as (6), (8) or (9).

The physical significance of v* is clear from Eq. (4).
T* represents the strength of intermolecular (interseg-
mental, interatomic) interactions, so that large T* values
correspond to high attractive configurational energies.
Thus, polymers with strong orientation should have high
T* values. This is indeed the case for higth density poly-
ethylenes investigated by Mano and his colleagues [22]
where the shear controlled injection molding (SCORIM)
technique produces a material with a higher T* value
than the conventional injection molding. A similar con-
clusion has been reached by Berry and coworkers [32]
who have determined P–V–T relations for a series of
polymer liquid crystals. Once a liquid crystal rich phase
(islands) is formed, an increase of the concentration of
the LC constituent in the copolymers produces necessari-
ly more orientation – what is reflected in increasing T*
values.
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lna A ln T T ln[v(T, vT, T, ref refσ σ σ= + +/ ) / ]

B / (v – 1) + C( – refσ σ+ ˜ ).

lna A ln v( ) / v B / ( C( –ref refσ σ σ ν σ σ= + + +˜ – ) )1

κ T
–1

T= –V V / P)(∂ ∂

k P *[1+ 5(T ln v)] / v .B
3/2 6= +˜ ˜ ˜

α = ∂ ∂– (V V / T)–1
P

αL
–1

PL L / T)= ∂ ∂– (

v(T +1) = v(T) + (T)α



The third reducing parameter is P*. Its physical sig-
nificance has been elucidated by connecting it to the pair
interaction potential u(R) and the binary radial distribu-
tion function g(R). The result is [33]:

(22)

Here µ is a geometric parameter (equal to unity for the
simple cubic lattice with the coordination number z = 6),
N is the number of particles in the system (hence N/V is
the numerical density) while R is the average interparti-
cle distance.

To conclude, it is worth noting that the inverse way,
from mechanical properties to the equation of state, ex-
ists also. To the knowledge of this author, it has been
used only once. From values of the ductile–brittle impact
transition temperatures, each corresponding to a specific
value of the stress concentration factor for low-density
polyethylene (LDPE), values v(T) of the specific vol-
umes as a function of temperature have been calculated
[7]. The average difference between computed and ex-
perimental v values for LDPE amounted to 0.092% only.
This directly supports the basic premise of the present
paper advocated already by Doolittle [2]: mechanical
and rheological behavior of viscoelastic materials reflect
their free volume and equation of state parameters – as
well as vice versa.
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