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Voronoi polyhedra and Delaunay simplexes in the structural analysis
of molecular-dynamics-simulated materials
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Voronoi and Delaunay tessellations are applied to pattern recognition of atomic environments and to inves-
tigation of the nonlocal order in molecular-dynamics~MD!-simulated materials. The method is applicable also
to materials generated using other computer techniques such as Monte Carlo. The pattern recognition is based
on an analysis of the shapes of the Voronoi polyhedron~VP!. A procedure for contraction of short edges and
small faces of the polyhedron is presented. It involves contraction to vertices of all edges shorter than a certain
fraction x of the average edge length, with concomitant contraction of the associated faces. Thus, effects of
fluctuations are eliminated, providing ‘‘true’’ values of the geometric coordination numbersf , both local and
averaged over the material. Nonlocal order analysis involves geometric relations between Delaunay simplexes.
The methods proposed are used to analyze the structure of MD-simulated solid lead@J. Rybicki, W. Alda, S.
Feliziani, and W. Sandowski, inProceedings of the Conference on Intermolecular Interactions in Matter,
edited by K. Sangwal, E. Jartych, and J. M. Olchowik~Technical University of Lublin, Lublin, 1995!, p. 57;
J. Rybicki, R. Laskowski, and S. Feliziani, Comput. Phys. Commun.97, 185~1997!# and germianium dioxide
@T. Nanba, T. Miyaji, T. Takada, A. Osaka, Y. Minura, and I. Yosui, J. Non-Cryst. Solids177, 131 ~1994!#.
For Pb the contraction results are independent ofx. For the open structure of GeO2 there is anx dependence
of the contracted structure, so that using several values ofx is preferable. In addition to removing effects of
thermal perturbation, in open structures the procedure also cleans the resulting VP from faces contributed by
the second neighbors. The analysis can be combined with that in terms of the radial distributiong(R), making
possible comparison of geometric coordination numbers with structural ones@W. Brostow, Chem. Phys. Lett.
49, 285 ~1977!#. @S0163-1829~98!05721-X#
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I. INTRODUCTION

Contemporary computers allow the performance of m
lecular dynamics~MD! simulations for systems composed
hundreds of thousands of particles, which makes poss
simulations of multicomponent and multiphase materials i
realistic way. The same statement applies to the mate
generated on a computer by the Monte Carlo~or yet some
other! procedure. Analysis of structures of perspicuo
computer-simulated materials is helpful in the understand
of structure-property relationships in complex real materia
such as those including polymer liquid crystals,1 or in
polymer-based~for instance, fiber-reinforced! composites.
Therefore, improving our structure analysis capabilit
would be useful for all classes of materials.

One approach is based on the use of the radial distribu
function g(R), where R is the distance between particle
~here atoms, molecules, polymer chain segments, or ions!, as
defined, for instance, in Ref. 2. For nonisotropic systems
also uses the angular distribution function, with both fun
tions averaged over the whole sample volume. An analyt
formula for g(R) was developed already in 1976~Ref. 3!
and has been shown to provide accurate results for mate
so disparate as argon,4He, neon, and sodium, including als
sodium generated by Monte Carlo~MC! simulation ~both
MC and MD methods are described, for instance, in Refs
and 2!. Given g(R) one can calculate thestructural coordi-
570163-1829/98/57~21!/13448~11!/$15.00
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nation numberz for the kth coordination sphere around
given particlePi :4

zik5rE
Rmin~k!

Rmin~k11!

4pR2g~R!. ~1!

Herer is the number density equal to the number of partic
per unit volume. Thekth peak ofg(R) is located between
two minima of the functionRmin(k) andRmin(k11). The in-
dex i pertains to the particlePi and is dropped when we ar
dealing withzk values for the material as a whole, such
those obtained by Fourier transforming experimental diffr
tometric data. The structural coordination number@maximum
z1512 for the hexagonal-closed-packed~hcp! and face-
centered-cubic~fcc! lattices# is usually lower than the aver-
age geometric coordination numberf for a given material
discussed below.

z1 values are often sufficient for the characterization
regular lattices, even those containing fairly high concen
tions of defects. For noncrystalline materials the knowled
of g(R) diagrams plus a series ofzk values withk>1 can be
used. Typically for liquids and glasses one obtains fractio
zk values.4 There are, however, at least two alternative a
proaches. One is the SO~3! invariants analysis5–8 for charac-
terization of local structures~local-order or bond-order pa
rameters!. Comparison between sets of SO~3! invariants
allows for distinguishing between predefined reference p
terns. The sets of invariants suitable for the identification
13 448 © 1998 The American Physical Society
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57 13 449VORONOI POLYHEDRA AND DELAUNAY SIMPLEXES IN . . .
the fcc, hcp, and icosahedral structures are well known,6 but
the extension of the method to other geometries is ra
difficult; due to a limited number of invariants the concl
sions about the local structure are not necessarily unamb
ous.

The third approach—taken in the present paper—is ba
on the tessellation investigated in detail for sets of points
Voronoi9,10 and subsequently applied to physic
systems.2,11–17 One uses the Voronoi polyhedron~VP! and
Delaunay simplex~DS!. A VP is defined as the minima
polyhedron whose planar faces bisect at right angles the l
joining a particle ~these are again, atom, molecule, cha
segment, or ion! to its neighbors; a pedantic definition i
terms of sets is given by one of us in Ref. 15. The numbe
faces f i for the i th particle is itsgeometric coordination
number. Like the structural coordination numberszi , f i val-
ues also can be averaged to providef for the whole material.
Values of f 520 or even more are known to be possible18

The VP diagram, also called the VP network~a set of VP’s
constructed for all atoms in the sample! splits in a unique
manner the total sample volume into the zones owned
each particle. DS’s are geometrically dual to VP’s; that is
vertex of a VP is the central site of the corresponding D
and each particle~center of a VP! is a vertex of the corre-
sponding DS. One can assign each vertex of the former
tice to the elementary units of the latter. The faces of D
intersect the edges of VP’s, and the faces of VP’s inters
the edges of DS’s. VP and DS networks contain a formida
amount of information about the structure of the sample.

The difference between VP and DS descriptions is in
access to the information. The shape of a VP reflects
arrangement of all the neighbors of the given atom. D
represent the structure of clusters composed of four adja
atoms. In the amorphous structures, DS’s are disordered
rahedrons, whereas VP’s are more complex polyhedr
The VP technique was applied to the analysis of the struc
of the close-packed15–17,19–24 and continuous network
materials25–27 in a relatively simple way; some statistics
the geometric properties of the polyhedrons were provid
We propose below a more systematic and direct approac
the usage of the stochastic geometry methods in the struc
analysis.

The paper is organized as follows. In Sec. II we descr
a procedure of the pattern recognition of atomic enviro
ments. The procedure analyzes the shapes of the Vor
polyhedra one by one; thus it can be applied to the detec
of differently structured zones in multiphase materials.
Sec. III we present a method of the nonlocal arrangem
analysis based on investigation of mutual geometric relati
between the elements of the Delaunay network. An appl
tion of these methods to the analysis of the MD-simula
glassy and partially crystallized lead is described Sec.
similar to the analysis for germanium dioxide reported
Sec. V. Section VI includes some conclusions.

II. NEIGHBOR-ARRANGEMENT RECOGNITION

The method of a local-particle arrangement spectrosc
is based on the analysis of VP shapes. VP’s are constru
and analyzed recursively for all atoms in the samples, so
the individual neighborhoods are treated independently.
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algorithm consists of two stages. At first, in order to elim
nate the effects of small deviations from the equilibriu
atom positions~due to the thermal motions!, we remove
from the VP network small faces and short edges. In
second stage we compare the polyhedra so constructe
certain predefined polyhedra; the number and the shape
the latter can be arbitrary.

To demonstrate the procedure used, let us consider
influence of perturbations of atomic positions in an arbitra
crystalline lattice on their VP networks. A characteristic fe
ture of certain crystalline~fcc, hcp, etc.! VP networks is the
existence of degenerate vertices and edges. Degen
neighbors corresponding to such vertices or edges have
defined in Ref. 15. A degenerate vertex is common to m
than four edges, while a degenerate edge is common to m
than three faces. As discussed also in Ref. 15, there also
indirect neighbors: there is a common face, but the midpo
of the line connecting the atoms does not belong to that fa
If the midpoint belongs to the common face, we have
simplest case of direct neighbors.15 Here direct and indirect
neighbors do not have to be distinguished; thus they are b
called geometric neighbors. If the degeneracy is present,
obvious that an arbitrary small displacement of atoms in
crystalline structure removes it. The degenerate neighb
will become the geometric ones or will cease to be the nei
bors altogether. In the former case, in the place of a deg
erate VP vertex a small face or a short edge will appe
degenerate edges will become small elongated faces. T
by eliminating short edges and small faces from the VP n
work by contracting them to vertices or edges,we remove the
effects of the fluctuations. The same objective could b
achieved by suitable displacements of the atoms. Howe
since we have no information about the individual fluctu
tions of the atoms in the sample, such a procedure canno
realized in practice. In a structure in which the degener
vertices are absent@body-centered-cubic~bcc! lattice is an
example#, small perturbations of the position do not chan
the topology of the network. Thus, the analysis of such str
tures can be performed going directly to the second stag
the procedure.

A. Small-face and short-edge elimination

To assure reproducibility, we need to describe in de
the procedures of elimination of small faces and short edg
The former is realized by exclusion of the geometric neig
bors associated with them, followed by a repeated const
tion of a new VP. Figure 1 presents a distribution of fa
areas in a distorted hcp lattice; fcc lattice leads to sim
results. Positions of points in the ideal structure are shif
by a certain distance~perturbation displacement! in a random
direction. The displacements are scaled to the near
neighbor distance. It is seen that the faces of polyhedra
be grouped together into two sets that contain only small
only large faces. We assume that small faces are of the
turbative origin. Therefore, we need to contract all faces h
ing an area smaller than, say, 0.2 on the average.

To contract short edges we have to use a more com
cated method; there are at least two reasons for that. F
the edges can be removed only one by one, not all at
same time; this is in contradistinction to the face eliminatio
Second, edge lengths are very sensitive to the particle
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placements. Figure 2 presents a distribution of edge len
for a distorted hcp lattice after the face elimination. It is se
that the edges are also divided into two subsets and the s
ones are of perturbative origin. The figure shows that one
to eliminate all edges shorter than about 0.5 of the aver
length. Because of such a high value of the rejection coe
cient a special algorithm has to be applied in order to dis
guish relatively long perturbative edges from the regu
edges~inherent to the ideal network! of similar length so as
not to eliminate too many edges. The algorithm for the sh
edge contraction can be summarized as follows:~1! choose a
VP, contract all edges shorter than a certain fractionx of the
average edge length;~2! find the shortest edge;~3! if the
edge is shorter then a fractiony (y.x) of the average edge
then check the shape of the polyhedron; if the shape belo
to the set of predefined patterns, then take the next poly
dron and go to step~1!; otherwise contract the edge und
consideration, and go to step~2!; ~4! if the edge is longer
then a fractiony of the average edge, then take the ne
polyhedron and go to step~1!.

FIG. 1. The distribution function of the face areas, averaged
all VP’s, plotted for a perturbed hcp lattice. The points in the str
ture are shifted by the perturbation displacement in a random d
tion. The displacements are scaled to the nearest-neighbor dis
and face areas are expressed in units of the average face area

FIG. 2. The distribution of the edge lengths, averaged for
VP’s plotted for a perturbed hcp lattice after the elimination
small faces. The edge length is scaled to the average edge len
hs
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Detailed tests of the algorithm efficiency allowed the e
tablishment of the optimal values of the parametersx andy
as 0.4 and 0.6, respectively. Takingx,0.4 results in switch-
ing of the shape recognition procedure sooner; if the shap
a given polyhedron is undefined, there are no conseque
except for slowing down the computations. Takingy.0.6
for an undefined shape causes subsequent contractions,
ing eventually to a polyhedron with only a few edges and
small number of faces. Oncex andy are fixed at the optima
values, the elimination of small faces can be omitted in pr
ciple. These faces contain also some short edges, and
edge contraction removes them automatically. However,
initial elimination of the small faces makes the compu
tional time considerably shorter.

B. Polyhedron shape identification

The shape of an arbitrary polyhedron can be described
three sets of integers:

F5~ f 3 , f 4 , f 5 ,...!, ~2a!

V5~v3 ,v4 ,v5 ,...!, ~2b!

E5~e4 ,e5 ,e6 ,...!. ~2c!

f i is the number of thei -edged faces in a polyhedron;v i is
the number of the vertices of a polyhedron from which e
actly i edges originate. In the case of a nondegenerate
only v3 do not vanish, hencei 23 determines the degenera
tion degree. Finally,ei is the number of edges for whichi
equalsj 1k14, wherej andk are the degrees of degener
tion of both vertices associated to the edge. Two polyhedr
are said to have the same topological structure if they h
the sameF, V, andE sets. Table I presents examples ofF,
V, andE sets for some polyhedrons.

We have tested the method on some perturbed crysta
lattices. As previously, the lattice points were shifted by
certain distance in a random direction. All the polyhedrons
the structures tested were correctly recognized for the
placement range lower then 0.13 of the nearest-neighbor
tance. Figure 3 presents the results of the pattern recogn
applied to fluctuated hcp structures. No hcp polyhedra h
been detected in the structures perturbed within a displa
ment greater than 0.25.

III. A METHOD FOR NONLOCAL ORDER DESCRIPTION

As mentioned in the Introduction, the Delaunay netwo
is geometrically dual to the Voronoi network. Each VP ve
tex can be assigned to a certain DS. Since in degene
structures several kinds of VP vertices appear, the Delau
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TABLE I. The F, V, andE sets for some polyhedra.

Polyhedron F V E

Cube 0, 6 8, 0 12, 0
fcc 0, 12 8, 6, 0 0, 24
hcp 0, 12 8, 6, 0 3, 18, 3
Icosahedron 0, 0, 12 20, 0 30, 0
bcc 0, 6, 0, 8 24, 0 36, 0
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57 13 451VORONOI POLYHEDRA AND DELAUNAY SIMPLEXES IN . . .
network necessarily contains several types of topologic
different DS’s. For example, in the fcc and hcp structu
one has exactly two types of VP vertices: nondegene
ones that are associated with regular tetrahedral DS’s
degenerate ones associated with octahedral DS’s. One
assign more than one DS to each degenerate VP ve
Therefore, it is helpful to introduce the definition of anex-
tended Delaunay simplex, that is, a Delaunay polyhedro
containing more than four atoms. Such simplexes will a
be referred to as degenerate Delaunay clusters~DDC’s!. The
geometric interpretation of DDC’s is similar to that of DS’
they can be associated to vertices of the Voronoi netwo

FIG. 3. The dependence of the fractionNhcp of the recognized
polyhedra on the perturbation displacement.
ly
s
te
nd
an
x.

o

k;

however, in contradistinction to the usual Delaunay si
plexes only one DDC is assigned to one degenerate ve
Important for applications is the fact that the appearance
DDC’s is a manifestation ofcrystallization. In particular, the
existence of six-atom DDC’s suggests that fcc or hcp regi
are present in the analyzed sample. A subsequent, some
closer examination of the geometric relations between
DDC’s reveals unequivocally the exact type of the cryst
line structure.

FIG. 4. The dependence of the tetrahedricityT parameter of
simplexes~defined in the text! on the distortion degree of the idea
hcp lattice. All simplexes ofT smaller than 0.5 are of tetrahedra
origin.
pe
TABLE II. The influence of the perturbation displacement« on the parameters of the 3-, 2-, and 1-ty
clusters in perfect hcp sample.N( i ) is the number ofi -element clusters,N is the number of all clusters,B is
the size of the largest cluster. The hcp lattice contains 576 points.

«

3-type 2-type 1-type

N(1) N(2) B N B N B N

~a! 6-atom DDC’s
0.01 0 0 6 96 576 1 576 1
0.07 0 0 6 96 576 1 576 1
0.08 0 0 6 96 566 1 566 1
0.09 2 0 6 98 554 1 554 1
0.1 6 2 6 103 534 1 534 1
0.11 15 3 6 111 498 1 498 1
0.12 21 12 15 117 461 1 461 1
0.13 34 23 17 128 425 1 425 1
0.14 42 29 14 133 389 1 389 1
0.15 42 34 12 133 360 1 360 1

~b! Regular tetrahedral DS’s
0.01 0 576 2 576 1152 1 1152 1
0.07 0 576 2 576 1152 1 1152 1
0.08 4 572 2 576 1148 1 1148 1
0.09 27 546 2 573 1119 1 1119 1
0.1 83 483 3 567 1052 1 1052 1
0.11 128 401 5 531 937 2 938 1
0.12 181 315 4 498 806 12 818 1
0.13 215 231 4 451 662 28 693 1
0.14 232 174 4 410 544 37 594 1
0.15 239 120 4 362 195 63 490 1
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Now, using the notions introduced above, we present
efficient method for the medium- and long-range ord
analysis in multiphase materials. The structure recogni
method is based on investigation of DS shapes, and geo
ric relations between DS’s in structurally distinct phases.
consider the structures containing degenerate Voronoi
works. Our discussion focuses only on two examples
quently occurring in MD-simulated monatomic materials, f
and hcp phases. Analysis of other degenerate structures
be performed in a similar way. Moreover, the investigati
of any nondegenerate structure~such as bcc or random clos
packed! is merely a particular, and more simple case,
cause the DDC detection is not necessary. The method
sists of two steps: elimination of lattice distortion and mutu
geometric relation analysis.

A. Lattice distortion elimination

As in Sec. II, one assumes that the actual atom confi
ration in the system under analysis is a slightly perturb
unknown, but well-defined lattice. If the lattice is degenera
small perturbations change the shapes of DS’s, and
DDC’s can be decomposed into the usual DS’s. The pro
dure of perturbation elimination is based on the contract
of short VP network edges. The distance between the
vertices is said to be small, if it is shorter than 0.4 of t
average edge length~see again Fig. 2!. This contraction is
equivalent to the amalgamation of the simplexes associ
to vertices that are the ends of the contracted edge. If
vertices are the ends of one edge, the corresponding
plexes have a common face~or alternatively three common
atoms!. Thus, amalgamating two four-atom Delaunay po
hedra we construct one five-atom DDC, amalgamating fo
atom and five-atom DDC’s we obtain one six-atom~octahe-
dral! DDC, etc. To reveal the influence of the perturbation
the DS’s, we use the tetrahedricity parameterT defined first
by Medvedev and Naberukhin20 and used subsequently fo
various purposes.22,23 In particular, a basic difference be
tween the liquid and amorphous solid states has been de
in terms of this parameter.23 We have

FIG. 5. The distribution of the tetrahedricity plotted for samp
described in the text.Tmax is the cutoff value for tetrahedral sim
plexes.
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T5(
i , j

~ l i2 l j !
2/l2, ~3!

wherel i is the length of thei th Delaunay simplex edge;l is
the average edge length of the simplex. As an example,
show the dependence of theT parameter on the perturbatio
in the hcp lattice in Fig. 4. An analogous plot for the fc
lattice is identical. It turns out that all DS’s forT smaller
than 0.5originate from regular tetrahedra.

B. Geometric relations between Delaunay polyhedrons

At this stage we analyze geometric relations betwe
DS’s and between DDC’s inherent to certain reference p
terns, and those detected in the MD-simulated sample un
consideration. In the case of fcc and hcp lattices we ha
respectively, regular tetrahedral DS’s and octahedral DDC
In the former, the vertices of the VP network assigned
DS’s are never the ends of an edge. A similar situation
found in the case of DDC’s. Thus, each edge ends with v
tices belonging to different types of the Delaunay clust

FIG. 6. The tetrahedral DS’s~a! and six-atom DDC’s~b! in a
slowly quenched sample. The circles are centered at the cente
the simplexes~the vertices of VP’s!. The segments connect th
neighbors in terms of the 3 relation.
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57 13 453VORONOI POLYHEDRA AND DELAUNAY SIMPLEXES IN . . .
~DS’s and DDC’s are both Delaunay clusters!. The regular
tetrahedral DS is connected by two atoms~an edge! to an-
other DS, and a similar statement applies to DDC’s. Th
tetrahedral simplexes and octahedral DDC’s compose
nite three-dimensional clusters. In the hcp structure, the
rahedral simplexes share a common face, producing t
element clusters. The double clusters naturally have

FIG. 7. The~a! fcc- and~b! hcp-coordinated atoms in a slowl
cooled sample. The circles are centered at the Pb atoms that
fcc ~a! or hcp ~b! neighborhoods. The lines connect geomet
neighbors.
s,
fi-
t-
o-
e

common edge. The octahedral DDC’s are connected by
faces and compose infinite linear clusters, parallel to the a
of double tetrahedral clusters.

Let us introduce a notation that will be helpful in th
description of geometric relations in the sets of DS’s a
DDC’s. When two simplexes share three atoms, we say
they remain in a ‘‘3-relation’’; if they share at least tw
atoms, there is a ‘‘2-relation.’’ Finally, if the Delaunay poly
hedra share at least one atom, we say that they are
‘‘1-relation.’’ The 3-relation implies the 1- and the 2
relations, and the 2-relation implies the 1-relation, but not
3-relation.

Given this terminology, we see that we can construct
type, 2-type, and 1-type clusters of DS’s or DDC’s. A D
~DDC! belongs to ani -type cluster if it isi related to any
element of this cluster. So a 1-type cluster contains 2-
3-type clusters, etc. Mutual geometric relations betwe
DS’s ~or DDC’s! in any sample under analysis can be d
scribed in a very concise form. In the case of the fcc str
ture, tetrahedral simplexes and octahedra are isolated in
spect to the 3-relation, whereas in respect to the 2- and
relations they compose infinite clusters, containing all ato
of the sample. In the hcp phase, tetrahedral simplexes
arranged in double 3-type clusters, and infinite 2- and 1-t
clusters, whereas octahedra form an infinite linear 3-ty
cluster.

ve

FIG. 8. The tetrahedral simplexes in a quickly quenched sam
Circles and edges as in Fig. 6.
d Pb.
TABLE III. The results of the Delaunay network analysis performed for slowly and quickly quenche
The columns are described in the caption of Table II.

3-type 2-type 1-type

N(1) N(2) B N B N B N

~a! Clusters of 6-atom DDC’s
Fast 50 17 9 89 168 2 169 1
Slow 60 79 7 197 422 1 422 1

~b! Clusters of the tetrahedral simplexes
Fast 45 3 998 62 1135 1 1135 1
Slow 363 210 24 619 958 1 958 1
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The comparison of the shapes and sizes of the 3-, 2-
1-type clusters in the sample with the clusters determined
the predefined reference structures allows one to draw s
conclusions concerning the nonlocal arrangement. For
ample, if in any region of the sample one finds about t
times more tetrahedral simplexes than octahedral DDC
and they are rather isolated as far as 3-relations are
cerned, we infer that the region has the fcc structure. If th
is a large 3-type cluster of tetrahedral simplexes in
sample, we are dealing with a random-close-packed~rcp!
glass. Table II presents the influence of perturbations of
ideal hcp structures on properties of 3-, 2-, and 1-type c
ters. It is seen that for fluctuations greater than 8%, the c
ters of tetrahedral DS’s and octahedral DDC’s become
ferent from the ones expected in an unperturbed structu

A similar analysis can be performed for other kinds
phases. For example, the bcc phase has only DS’s ofT equal
to 0.203; thus they compose one infinite three-dimensio
cluster in terms of the 3-relation. Detection of bcc simplex
consists in the rejection of simplexes that have very low
well as very high values of the tetrahedricity parameter
fined by Eq.~3!.

IV. ANALYSIS OF MD-SIMULATED SOLID Ph

As an example, we apply our method to the analysis
the local arrangement and the nonlocal ordering in t
samples of MD-simulated lead.28,29 The simulations have
been performed in the microcanonical ensemble using
experimental pair-interaction potential of Dzugutov, Larss
and Ebbsjo30 obtained by a careful fitting of the MD result
to the static structure factorS(k) at 623 K ~23 K above the
melting temperature!. The interaction potentialu(r ) contains
hard-core and soft-core repulsion terms, and also an osc
tory long-range Friedel component:

u~r !5u1~r !1u2~r !1u3~r !,

TABLE IV. Number of faces in Voronoi polyhedra of Ge a
oms. The faces can be associated to neighboring oxygen or ge
nium. The polyhedra are not contracted.

Number of polyhedra
~%! Ge O

17.8 0 7
15.6 0 8
11.4 0 6
9.4 0 9
6.6 1 8
6.0 1 9
4.8 1 7
4.4 1 10
4.4 0 10
2.8 1 6
2.6 0 5
2.6 1 11
2.2 0 11
2.0 1 12
1.6 2 10
1.2 2 8
nd
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u1~r !5a1~b1 /r !12 exp@~r 2c1!21#, r ,c1 ,

u1~r !50, r>c1 ,

u2~r !5a2~b2 /r 2c2!exp@~r 2b2!21#, r ,b2 ,

u2~r !50, r>b2 ,

u3~r !5a3r 23cos~2KFr !. ~4!

The following values of the parameters were used:a1
5102.5 meV,b150.3284 nm,c150.572 nm,a2590 meV,
b250.483 nm, c250.5, a350.4183 meV nm3, and KF
515.417 nm21. The samples were prepared initially as we
equilibrated hot liquids of various densities~or alternatively
under various pressures!, and quenched at constant volum
and at various cooling rates down to 1 K. The results
ported below pertain to samples with high density equa
1503102 kg/m3. We recall that the experimental value o
the density of Pb at the melting point is 106.93102 kg/m3.
The samples were either quenched to 1 K directly from 5000
K ~fast cooling!, or else passed through equilibrium states
2500 K, 1250 K, 600 K, 300 K, and 150 K~slow cooling!.
Each sample contained 500 Pb atoms.

The distribution of the tetrahedricity of the DS’s is show
in Fig. 5. It is seen that the slowly cooled sample conta
only regular tetrahedral (T'0) and octahedral (T.1) sim-
plexes, which suggests the existence of fcc or hcp zones.
cutoff value for tetrahedral simplexes is equal to 0.5. Para
eters of the 3-, 2-, and 1-type clusters are presented in T
III. The large number of the tetrahedral simplexes that
isolated or appear in double clusters confirms the existe
of fcc and hcp phases. The tetrahedra isolated in terms o
3-relation are characteristic for the fcc structure, whereas
double clusters for the hcp configuration. Figure 6 prese
the arrangement of the regular tetrahedral DS’s and six-a
DDC’s in the simulation box. A laminar arrangement
DS’s and DDC’s is evident. The fcc and hcp neighborhoo
that have been found are shown in Fig. 7~the parametersx,
y of the edge contraction were equal to 0.4 and 0.6, resp
tively, and all the faces with areas smaller than 0.2 of
average value have been contracted!. 154 atoms of fcc-like
first neighborhood, and 199 atoms of hcp-like neighborho
were detected. The laminar arrangement of the fcc and
phases is clearly seen. We infer that the bcc or other e
ronments, if present, would be detected as well.

The quickly cooled sample has a quite different structu
The tetrahedricities of the DS’s change in a wide range~from
0 to more than 1.5, Fig. 3!, but small peaks at aboutT50
and 1.3 are still present. The large number of tetrahe
simplexes~Table III! and a large size of the 3-type cluste
suggest that the sample has a glassy structure~rcp!. Figure 8
shows the arrangement of the tetrahedral simplexes. No
oms with the fcc or hcp local arrangement have been
tected, and only two atoms have a full icosahedral neighb
hood.

V. APPLICATION OF THE CONTRACTION TECHNIQUE
TO OPEN STRUCTURES

The example of lead, while quite instructive, does not t
us how the new procedure would work for open structur

a-
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FIG. 9. Statistics of polyhedra face areas for various values ofx; y50.6, except in~a!. Face areas are expressed in units of the aver
face area of a given polyhedron.
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Therefore, we have applied the contraction method also
the analysis of germanium dioxide, namely, to local neig
borhoods of Ge atoms in a MD-simulated GeO2 sample. Our
simulation box contained 500 Ge atoms and 1000 O ato
interacting via the Born-Mayer pair potential, with the p
rameters defined by Nanbaet al.31 The simulation was per
formed in the constant pressure ensemble with a random
tial configuration. The sample was thermalized for 43104
to
-

s

i-

simulation femtosecond time steps at 300 K.
We have constructed the Voronoi polyhedra for Ge ato

as the central ones. As seen in Table IV, Ge-atom polyhe
share faces mainly with oxygen polyhedra, but there i
significant number of polyhedra with faces~always very
small! associated to Ge. Distribution of the face areas p
sented in Fig. 9~a! shows that noncontracted polyhedra co
sist of a nearly equal number of big and much smaller fa
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FIG. 10. Statistics of polyhedra edge lengths for various values ofx; y50.6, except in~a!. Edge lengths are expressed in units of t
average edge length of a given polyhedron.
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~average number of faces per polyhedron equals 8.1!. We
can see two well-separated peaks. This suggests that m
trigonal pyramids with oxygen atoms in verticesconstitute
the local Ge neighborhoods; the smaller faces originate f
further neighbors. In the case of distribution of edge leng
presented in Fig. 10~a!, due to quadratic dependence of fa
areas on edge lengths, these peaks are not so well sepa
but still remain visible. In order to show how the contracti
procedure deals with an open structure of GeO2, we per-
nly

m
s

ted

formed several contractions for 0.0<x<0.6, andy50.6. In
Tables V and VI one can see that the number of faces
polyhedra and their shapes are almostx independent in the
interval 0.0°0.2. There we have mainly two kinds of loca
neighborhoods: trigonal pyramids and trigonal bipyrami
As x increases beyond 0.2, the number of the latter decre
while the number of the former increases. A similar behav
appears in the case of square pyramids and square bip
mids; their overall number is much smaller, however. Suc
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dependence follows from the fact that Voronoi polyhedra
atoms with neighborhood types such as the trigonal bipy
mid and the square bipyramid contain one small triangu
face; with increasedx this face disappears during contra
tion. Distributions of face areas and edge lengths are
sented in Figs. 9 and 10. It is seen that the peak of sm
edges is visible well up tox50.3. For faces this peak doe
not disappear.

We find that the results of our contraction procedure m
depend onx for open structures. This is so because a l
geometric coordination numberf implies a relative simplic-
ity of the Voronoi polyhedra topology. During the contra
tion process a polyhedron is modified, and after each e
contraction we obtain a new shape. If the length of a c
tracted edge is larger thanx, and the polyhedron shape b
longs to a predefined set, the procedure terminates not
essarily arriving at the optimal shape. With a certain pract
parametersx andy are chosen so as to assure the maxim
efficiency of the method. This relies on experience and d
not sound precise, but there are at least two procedures
can be used. First, one can perform several contractions
various values ofx, thus generating more information abo
the structures. Second, one can assume, for instancx
50.1 for open andx50.4 for closed structures and the
compare results for different systems for fixedx. For all
structuresy50.6 can be taken.

The information so obtained can be combined with
knowledge of the radial distribution functiong(R) discussed
briefly in Sec. I. For open structures the structural coordi
tion numberz calculated from Eq.~1! can then be compare
with the geometric coordination numberf for a fixed x, or
with severalf (x) values obtained from a series of contra
tions. In contradistinction to open structures, for clos
packed structures there is no dependence of the contra
results onx.

TABLE V. Number of faces in contracted polyhedra of Ge a
oms. All faces are associated to oxygen,y50.6.

Number of Ge atoms~%! O

x50.0 52.0 5
44.6 4
1.8 6

x50.1 54.2 5
42.6 4
1.8 6

x50.2 52.8 5
44.8 4

x50.3 1.6 6
45.6 5
53.2 4

x50.4 68.8 4
30.2 5

x50.5 81.4 4
17.8 5

x50.6 90.4 4
8.8 5
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VI. CONCLUDING REMARKS

Space tesselations have been studied by the Ukrai
mathematician Voronoi approximately a century ago;9,10

with time, his work finds more and more uses.32–34We have
demonstrated the applications of the Voronoi and Delau
tessellations to the analysis of local and nonlocal arran
ments in MD-simulated materials. The Voronoi polyhed
allow definition of the neighborhoods of atoms in disorder
samples in a simple way, and the classification of the nei
bors, including direct and degenerate ones. The contrac
of faces and edges of the polyhedra has a clear geom
significance: it simply changes the category of a neighb
Therefore, the procedure of the local-order recognition c
be interpreted as a virtual rearrangement of geometric ne
bors present in the initial disordered structure. As shown
Sec. II, the procedure is efficient for lattices disordered w
the perturbation displacement up to 13% of the near
neighbor distance. For fluctuations lower then 15% no po
hedra other than the original ones have been detected fo
Pb system; this proves that for closed structures the me
leads to unambiguous results. For perturbations greater
25% no polyhedra were recognized in the Pb material. Th
the method has a relatively low efficiency for simulated m
terials with wide minima of the potentials. The results f
solid Pb show that in closed systems our procedure can
successfully applied to the detection of any phase pre
within the MD simulation box. The Delaunay simplexes c
be applied to investigate the nonlocal order. In particular,
analysis of the properties of the 3-, 2-, and 1-type clust
defined in this work allows the description of the nonloc
ordering, and also enables direct comparisons of structure

TABLE VI. Dependence of the shapes of the Voronoi polyhed
on x, y50.6.

x50.0 Trigonal pyramid 44.6%
Trigonal bipyramid 51.2%
Square bipyramid 1.6%
Square pyramid 1.0%

x50.1 Trigonal pyramid 42.6%
Trigonal bipyramid 53.2%
Square bipyramid 1.6%
Square pyramid 1.4%

x50.2 Trigonal pyramid 44.8%
Trigonal bipyramid 51.0%
Square bipyramid 1.4%
Square pyramid 2.0%

x50.3 Trigonal pyramid 53.2%
Trigonal bipyramid 42.8%
Square pyramid 2.8%

x50.4 Trigonal pyramid 68.8%
Trigonal bipyramid 26.6%
Square pyramid 3.6%

x50.5 Trigonal pyramid 81.4%
Trigonal bipyramid 14.2%
Square pyramid 3.6%

x50.6 Trigonal pyramid 90.4%
Trigonal bipyramid 5.4%
Square pyramid 3.4%
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different amorphous samples. In contradistinction to the
approach, the cluster method works also for extremely sm
~embryolike! crystalline zones in which the atoms donot
have a well-defined crystalline neighborhood.
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